On the use of conjugate gradient to calculate the eigenvalues and singular values of large, sparse matrices
暂无分享,去创建一个
[1] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[2] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[3] Christopher C. Paige,et al. The computation of eigenvalues and eigenvectors of very large sparse matrices , 1971 .
[4] Axel Ruhe,et al. The method of conjugate gradients used in inverse iteration , 1972 .
[5] Magnus R. Hestenes,et al. Pseudoinversus and conjugate gradients , 1975, CACM.
[6] D. Kershaw. The incomplete Cholesky—conjugate gradient method for the iterative solution of systems of linear equations , 1978 .
[7] R. Chandra. Conjugate gradient methods for partial differential equations. , 1978 .
[8] J. Cullum,et al. The Lanczos phenomenon—An interpretation based upon conjugate gradient optimization , 1980 .
[9] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[10] Magnus R. Hestenes,et al. Conjugate Direction Methods in Optimization , 1980 .
[11] Michael A. Saunders,et al. LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.
[12] B. Döhler. Ein neues Gradientenverfahren zur simultanen Berechnung der kleinsten oder größten Eigenwerte des allgemeinen Eigenwertproblems , 1982 .
[13] Minimal eigenvalue of large sparse matrices by an efficient reverse power-conjugate gradient scheme , 1983 .
[14] Gene H. Golub,et al. Matrix computations , 1983 .
[15] J. Cullum,et al. Lanczos algorithms for large symmetric eigenvalue computations , 1985 .
[16] R. P. Bording,et al. Applications of seismic travel-time tomography , 1987 .
[17] G. Gambolati,et al. An improved iterative optimization technique for the leftmost eigenpairs of large symmetric matrices , 1988 .