On-line estimation of Allan variance parameters

A new online method is presented for estimation of the angular random walk and rate random walk coefficients of IMU (inertial measurement unit) gyros and accelerometers. The online method proposes a state space model and proposes parameter estimators for quantities previously measured from off-line data techniques such as the Allan variance graph. Allan variance graphs have large off-line computational effort and data storage requirements. The technique proposed here requires no data storage and computational effort of O[100] calculations per data sample.

[1]  P. Kumar,et al.  Theory and practice of recursive identification , 1985, IEEE Transactions on Automatic Control.

[2]  Robert J. Elliott,et al.  Finite dimensional filters for ML estimation of discrete-time Gauss-Markov models , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[3]  Anthony Lawrence,et al.  Modern Inertial Technology , 1993 .

[4]  George W. Erickson An Overview of Dynamic and Stochastic Modeling of Gym , 1993 .

[5]  J. Ford Adaptive hidden Markov model estimation and applications , 1998 .

[6]  Boris Polyak,et al.  Acceleration of stochastic approximation by averaging , 1992 .

[7]  John B. Moore,et al.  Hidden Markov Models: Estimation and Control , 1994 .

[8]  P. Spreij Probability and Measure , 1996 .

[9]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[10]  D. Sargent,et al.  Extraction of stability statistics from integrated rate data , 1980 .

[11]  D. W. Allan,et al.  Statistics of atomic frequency standards , 1966 .

[12]  John Weston,et al.  Strapdown Inertial Navigation Technology , 1997 .

[13]  Harold J. Kushner,et al.  Stochastic Approximation Algorithms and Applications , 1997, Applications of Mathematics.

[14]  M. M. Tehrani,et al.  Ring Laser Gyro Data Analysis With Cluster Sampling Technique , 1983, Other Conferences.

[15]  Darryll J. Pines,et al.  Characterization of Ring Laser Gyro Performance Using the Allan Variance Method , 1997 .

[16]  Michael S. Bielas Stochastic and dynamic modeling of fiber gyros , 1994, Optics & Photonics.

[17]  Lennart Ljung,et al.  Theory and Practice of Recursive Identification , 1983 .

[18]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[19]  L. Gerencsér Rate of convergence of recursive estimators , 1992 .

[20]  Pravin Varaiya,et al.  Stochastic Systems: Estimation, Identification, and Adaptive Control , 1986 .

[21]  Anthony Lawrence,et al.  Modern Inertial Technology: Navigation, Guidance, and Control , 1993 .