Genetic optimisation of a fuzzy distribution model

Distribution problems deal with distribution from a number of sources to a number of destinations. Each source offers amounts of goods, while each destination demands quantities of these goods. The object is to find the cheapest transporting schedule that satisfies demand without violating supply restraints. In this paper we propose the use of fuzzy sets to represent the provisional information related to costs, demands and other variables. Moreover, we suggest including the problem of shortest route for the distribution vehicles. Finally, to solve this complex problem we propose using a genetic algorithm with a fuzzy fitness function.

[1]  Francisco Herrera,et al.  Solving an assignment-selection problem with verbal information and using genetic algorithms , 1999, Eur. J. Oper. Res..

[2]  Barry Render,et al.  Production and operations management : strategic and tactical decisions , 1996 .

[3]  Hiroto Mizunuma,et al.  Fuzzy Mixed Integer Programming Based on Genetic Algorithm and Its Application to Resource Distribution , 1995 .

[4]  Zbigniew Michalewicz,et al.  Evolutionary algorithms , 1997, Emerging Evolutionary Algorithms for Antennas and Wireless Communications.

[5]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[6]  Enrique López-González,et al.  THE SELECTION OF A PORTFOLIO THROUGH A FUZZY GENETIC ALGORITHM: THE POFUGENA MODEL , 1998 .

[7]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[8]  Hans-Jürgen Zimmermann,et al.  Fuzzy Set Theory - and Its Applications , 1985 .

[9]  A. Kaufmann,et al.  Técnicas operativas de gestión para el tratamiento de la incertidumbre , 1987 .

[10]  Z. Michalewicz,et al.  A genetic algorithm for the linear transportation problem , 1991, IEEE Trans. Syst. Man Cybern..

[11]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[12]  A. Kaufman,et al.  Introduction to the Theory of Fuzzy Subsets. , 1977 .

[13]  Didier Dubois,et al.  Fuzzy sets and systems ' . Theory and applications , 2007 .

[14]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[15]  Volker Nissen,et al.  Evolutionary Algorithms in Management Applications , 1995 .

[16]  A. Kaufmann,et al.  Introducción de la teoría de los subconjuntos borrosos a la gestión de las empresas , 1986 .