Molecular layer interneurons shape the spike activity of cerebellar Purkinje cells

[1]  George J. Augustine,et al.  Graded Control of Climbing-Fiber-Mediated Plasticity and Learning by Inhibition in the Cerebellum , 2018, Neuron.

[2]  J. Christie,et al.  Inhibition gates supralinear Ca2+ signaling in Purkinje cell dendrites during practiced movements , 2018, eLife.

[3]  K. Schilling,et al.  Synaptic input as a directional cue for migrating interneuron precursors , 2017, Development.

[4]  J. Delgado-García,et al.  Compromised Survival of Cerebellar Molecular Layer Interneurons Lacking GDNF Receptors GFRα1 or RET Impairs Normal Cerebellar Motor Learning , 2017, Cell reports.

[5]  Michael A. Gaffield,et al.  Movement Rate Is Encoded and Influenced by Widespread, Coherent Activity of Cerebellar Molecular Layer Interneurons , 2017, The Journal of Neuroscience.

[6]  Roy V. Sillitoe,et al.  Genetic silencing of olivocerebellar synapses causes dystonia-like behaviour in mice , 2017, Nature Communications.

[7]  Mitsuo Kawato,et al.  The Roles of the Olivocerebellar Pathway in Motor Learning and Motor Control. A Consensus Paper , 2017, The Cerebellum.

[8]  Cathrin B. Canto,et al.  Whole-Cell Properties of Cerebellar Nuclei Neurons In Vivo , 2016, PloS one.

[9]  Hunter L. Elliott,et al.  Purkinje Cells Directly Inhibit Granule Cells in Specialized Regions of the Cerebellar Cortex , 2016, Neuron.

[10]  Safiya I. Lahlaf,et al.  Purkinje Cell Collaterals Enable Output Signals from the Cerebellar Cortex to Feed Back to Purkinje Cells and Interneurons , 2016, Neuron.

[11]  Tao Lin,et al.  An optimized surgical approach for obtaining stable extracellular single-unit recordings from the cerebellum of head-fixed behaving mice , 2016, Journal of Neuroscience Methods.

[12]  Zhanmin Lin,et al.  Excitatory Cerebellar Nucleocortical Circuit Provides Internal Amplification during Associative Conditioning , 2016, Neuron.

[13]  Roy V. Sillitoe,et al.  Pathogenesis of severe ataxia and tremor without the typical signs of neurodegeneration , 2016, Neurobiology of Disease.

[14]  T. Sakaba,et al.  Ca2+ current facilitation determines short‐term facilitation at inhibitory synapses between cerebellar Purkinje cells , 2015, The Journal of physiology.

[15]  A. Person,et al.  Cerebellar premotor output neurons collateralize to innervate the cerebellar cortex , 2015, The Journal of comparative neurology.

[16]  Wei Wei,et al.  Conditional Knock-Out of Vesicular GABA Transporter Gene from Starburst Amacrine Cells Reveals the Contributions of Multiple Synaptic Mechanisms Underlying Direction Selectivity in the Retina , 2015, The Journal of Neuroscience.

[17]  Athanassios G. Siapas,et al.  Structured Variability in Purkinje Cell Activity during Locomotion , 2015, Neuron.

[18]  Beverley Clark,et al.  Interneuron- and GABAA receptor-specific inhibitory synaptic plasticity in cerebellar Purkinje cells , 2015, Nature Communications.

[19]  Yosef Yarom,et al.  A novel inhibitory nucleo-cortical circuit controls cerebellar Golgi cell activity , 2015, eLife.

[20]  E. J. Lang,et al.  Redefining the cerebellar cortex as an assembly of non-uniform Purkinje cell microcircuits , 2015, Nature Reviews Neuroscience.

[21]  Roy V Sillitoe,et al.  In vivo analysis of Purkinje cell firing properties during postnatal mouse development. , 2015, Journal of neurophysiology.

[22]  Jan Voogd,et al.  What we do not know about cerebellar systems neuroscience , 2014, Front. Syst. Neurosci..

[23]  S. Schiffmann,et al.  Subcellular structural plasticity caused by the absence of the fast Ca2+ buffer calbindin D-28k in recurrent collaterals of cerebellar Purkinje neurons , 2014, Front. Cell. Neurosci..

[24]  Timothy A. Blenkinsop,et al.  Modulation of Purkinje cell complex spike waveform by synchrony levels in the olivocerebellar system , 2014, Front. Syst. Neurosci..

[25]  Andrew K. Wise,et al.  Systematic Regional Variations in Purkinje Cell Spiking Patterns , 2014, PloS one.

[26]  S. Wojcik,et al.  Genetic ablation of VIAAT in glycinergic neurons causes a severe respiratory phenotype and perinatal death , 2014, Brain Structure and Function.

[27]  Joshua J. White,et al.  Cerebellar Zonal Patterning Relies on Purkinje Cell Neurotransmission , 2014, The Journal of Neuroscience.

[28]  Zhanmin Lin,et al.  Cerebellar modules operate at different frequencies , 2014, eLife.

[29]  Arnd Roth,et al.  Structured Connectivity in Cerebellar Inhibitory Networks , 2014, Neuron.

[30]  Boris Barbour,et al.  Ultra-rapid axon-axon ephaptic inhibition of cerebellar Purkinje cells by the pinceau , 2014, Nature Neuroscience.

[31]  Alain Marty,et al.  Estimating functional connectivity in an electrically coupled interneuron network , 2013, Proceedings of the National Academy of Sciences.

[32]  Roy V. Sillitoe,et al.  New roles for the cerebellum in health and disease , 2013, Front. Syst. Neurosci..

[33]  Tycho M. Hoogland,et al.  Strength and timing of motor responses mediated by rebound firing in the cerebellar nuclei after Purkinje cell activation , 2013, Front. Neural Circuits.

[34]  Egidio D'Angelo,et al.  Granule Cell Ascending Axon Excitatory Synapses onto Golgi Cells Implement a Potent Feedback Circuit in the Cerebellar Granular Layer , 2013, The Journal of Neuroscience.

[35]  Stacey L. Reeber,et al.  Establishment of topographic circuit zones in the cerebellum of scrambler mutant mice , 2013, Front. Neural Circuits.

[36]  Joshua J. White,et al.  Postnatal development of cerebellar zones revealed by neurofilament heavy chain protein expression , 2013, Front. Neuroanat..

[37]  S. Pulst,et al.  Changes in Purkinje cell firing and gene expression precede behavioral pathology in a mouse model of SCA2 , 2012, Human molecular genetics.

[38]  Roy V Sillitoe,et al.  Development of the cerebellum: from gene expression patterns to circuit maps , 2013, Wiley interdisciplinary reviews. Developmental biology.

[39]  A. Joyner,et al.  Limb anterior-posterior polarity integrates activator and repressor functions of GLI2 as well as GLI3. , 2012, Developmental biology.

[40]  Paolo Bazzigaluppi,et al.  Properties of the Nucleo-Olivary Pathway: An In Vivo Whole-Cell Patch Clamp Study , 2012, PloS one.

[41]  Zhenyu Gao,et al.  Distributed synergistic plasticity and cerebellar learning , 2012, Nature Reviews Neuroscience.

[42]  B. Sabatini,et al.  Dopaminergic neurons inhibit striatal output via non-canonical release of GABA , 2012, Nature.

[43]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[44]  Michael L. Wallace,et al.  Pinceau Organization in the Cerebellum Requires Distinct Functions of Neurofascin in Purkinje and Basket Neurons during Postnatal Development , 2012, The Journal of Neuroscience.

[45]  Court Hull,et al.  Identification of an Inhibitory Circuit that Regulates Cerebellar Golgi Cell Activity , 2012, Neuron.

[46]  J. Bower,et al.  Consensus Paper: Roles of the Cerebellum in Motor Control—The Diversity of Ideas on Cerebellar Involvement in Movement , 2012, The Cerebellum.

[47]  Roy V. Sillitoe,et al.  Parasagittal compartmentation of cerebellar mossy fibers as revealed by the patterned expression of vesicular glutamate transporters VGLUT1 and VGLUT2 , 2011, Brain Structure and Function.

[48]  A. Joyner,et al.  Ascl1 Genetics Reveals Insights into Cerebellum Local Circuit Assembly , 2011, The Journal of Neuroscience.

[49]  Kamran Khodakhah,et al.  The Role of Interneurons in Shaping Purkinje Cell Responses in the Cerebellar Cortex , 2011, The Journal of Neuroscience.

[50]  Roy V. Sillitoe,et al.  Fluorescence mapping of afferent topography in three dimensions , 2011, Brain Structure and Function.

[51]  R. A. Hensbroek,et al.  Spontaneous Activity Signatures of Morphologically Identified Interneurons in the Vestibulocerebellum , 2011, The Journal of Neuroscience.

[52]  Enrico Mugnaini,et al.  The unipolar brush cell: A remarkable neuron finally receiving deserved attention , 2011, Brain Research Reviews.

[53]  Y. Yanagawa,et al.  The physiological roles of vesicular GABA transporter during embryonic development: a study using knockout mice , 2010, Molecular Brain.

[54]  Roy V Sillitoe,et al.  Engrailed Homeobox Genes Regulate Establishment of the Cerebellar Afferent Circuit Map , 2010, The Journal of Neuroscience.

[55]  A. Joyner,et al.  Embryonic origins of ZebrinII parasagittal stripes and establishment of topographic Purkinje cell projections , 2009, Neuroscience.

[56]  Richard Apps,et al.  Cerebellar cortical organization: a one-map hypothesis , 2009, Nature Reviews Neuroscience.

[57]  K. Schilling,et al.  The Treasury of the Commons: Making Use of Public Gene Expression Resources to Better Characterize the Molecular Diversity of Inhibitory Interneurons in the Cerebellar Cortex , 2009, The Cerebellum.

[58]  K. Obata,et al.  Laminar Fate and Phenotype Specification of Cerebellar GABAergic Interneurons , 2009, The Journal of Neuroscience.

[59]  William Wisden,et al.  Synaptic inhibition of Purkinje cells mediates consolidation of vestibulo-cerebellar motor learning , 2009, Nature Neuroscience.

[60]  P. J. Sjöström,et al.  Traveling waves in developing cerebellar cortex mediated by asymmetrical Purkinje cell connectivity , 2009, Nature Neuroscience.

[61]  I. Sugihara,et al.  Projection of reconstructed single purkinje cell axons in relation to the cortical and nuclear aldolase C compartments of the rat cerebellum , 2009, The Journal of comparative neurology.

[62]  K. Sawada,et al.  Striking pattern of Purkinje cell loss in cerebellum of an ataxic mutant mouse, tottering. , 2009, Acta neurobiologiae experimentalis.

[63]  A. Joyner,et al.  Engrailed Homeobox Genes Determine the Organization of Purkinje Cell Sagittal Stripe Gene Expression in the Adult Cerebellum , 2008, The Journal of Neuroscience.

[64]  B. Lowell,et al.  Synaptic release of GABA by AgRP neurons is required for normal regulation of energy balance , 2008, Nature Neuroscience.

[65]  Euiseok J. Kim,et al.  Ascl1 (Mash1) lineage cells contribute to discrete cell populations in CNS architecture , 2008, Molecular and Cellular Neuroscience.

[66]  Richard Hawkes,et al.  Golgi Cell Dendrites Are Restricted by Purkinje Cell Stripe Boundaries in the Adult Mouse Cerebellar Cortex , 2008, The Journal of Neuroscience.

[67]  N. Barmack,et al.  Functions of Interneurons in Mouse Cerebellum , 2008, The Journal of Neuroscience.

[68]  C. Sotelo Development of “Pinceaux” formations and dendritic translocation of climbing fibers during the acquisition of the balance between glutamatergic and γ‐aminobutyric acidergic inputs in developing Purkinje cells , 2008, The Journal of comparative neurology.

[69]  Chris I. De Zeeuw,et al.  Time windows and reverberating loops: a reverse-engineering approach to cerebellar function , 2008, The Cerebellum.

[70]  Isabel Llano,et al.  Recurrent axon collaterals underlie facilitating synapses between cerebellar Purkinje cells , 2007, Proceedings of the National Academy of Sciences.

[71]  J. Mariani,et al.  Oxidative stress, nitric oxide, and the mechanisms of cell death in Lurcher Purkinje cells , 2007, Developmental neurobiology.

[72]  Richard Hawkes,et al.  A key role for the HLH transcription factor EBF2COE2,O/E-3 in Purkinje neuron migration and cerebellar cortical topography , 2006, Development.

[73]  K. Schilling,et al.  Postnatal development of the murine cerebellar cortex: formation and early dispersal of basket, stellate and Golgi neurons , 2006, The European journal of neuroscience.

[74]  Sonja M. Wojcik,et al.  A Shared Vesicular Carrier Allows Synaptic Corelease of GABA and Glycine , 2006, Neuron.

[75]  Reinoud Maex,et al.  Dendritic amplification of inhibitory postsynaptic potentials in a model Purkinje cell , 2006, The European journal of neuroscience.

[76]  H. Zoghbi,et al.  Math1 Expression Redefines the Rhombic Lip Derivatives and Reveals Novel Lineages within the Brainstem and Cerebellum , 2005, Neuron.

[77]  Gord Fishell,et al.  Math1 Is Expressed in Temporally Discrete Pools of Cerebellar Rhombic-Lip Neural Progenitors , 2005, Neuron.

[78]  Masahiko Watanabe,et al.  Ptf1a, a bHLH Transcriptional Gene, Defines GABAergic Neuronal Fates in Cerebellum , 2005, Neuron.

[79]  Rafael Luján,et al.  Preferential localization of the hyperpolarization‐activated cyclic nucleotide‐gated cation channel subunit HCN1 in basket cell terminals of the rat cerebellum , 2005, The European journal of neuroscience.

[80]  C. D. De Zeeuw,et al.  Don't get too excited: mechanisms of glutamate-mediated Purkinje cell death. , 2005, Progress in brain research.

[81]  E. Mugnaini,et al.  The GABAergic cerebello-olivary projection in the rat , 2005, Anatomy and Embryology.

[82]  E. Pich,et al.  Synaptic release , 2005, Experientia.

[83]  Priscilla Wu,et al.  Ankyrin-Based Subcellular Gradient of Neurofascin, an Immunoglobulin Family Protein, Directs GABAergic Innervation at Purkinje Axon Initial Segment , 2004, Cell.

[84]  A. Joyner,et al.  Cell Behaviors and Genetic Lineages of the Mesencephalon and Rhombomere 1 , 2004, Neuron.

[85]  H. Ino Immunohistochemical Characterization of the Orphan Nuclear Receptor RORα in the Mouse Nervous System , 2004, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[86]  R. Llinás,et al.  The mossy fibre-granule cell relay of the cerebellum and its inhibitory control by Golgi cells , 2004, Experimental Brain Research.

[87]  R. Llinás,et al.  Parallel fibre stimulation and the responses induced thereby in the Purkinje cells of the cerebellum , 2004, Experimental Brain Research.

[88]  Richard Hawkes,et al.  Abnormal Dysbindin Expression in Cerebellar Mossy Fiber Synapses in the mdx Mouse Model of Duchenne Muscular Dystrophy , 2003, The Journal of Neuroscience.

[89]  M. Frotscher,et al.  Neurogranin expression by cerebellar neurons in rodents and non‐human primates , 2003, The Journal of comparative neurology.

[90]  A. Marty,et al.  Coexistence of Excitatory and Inhibitory GABA Synapses in the Cerebellar Interneuron Network , 2003, The Journal of Neuroscience.

[91]  K. Sawada,et al.  Expression of inorganic phosphate/vesicular glutamate transporters (BNPI/VGLUT1 and DNPI/VGLUT2) in the cerebellum and precerebellar nuclei of the rat. , 2002, Brain research. Molecular brain research.

[92]  R. Hawkes,et al.  Whole-mount Immunohistochemistry: A High-throughput Screen for Patterning Defects in the Mouse Cerebellum , 2002, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[93]  Shankar Srinivas,et al.  Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus , 2001, BMC Developmental Biology.

[94]  T. Südhof,et al.  Synaptic assembly of the brain in the absence of neurotransmitter secretion. , 2000, Science.

[95]  K. Herrup,et al.  Pax-2 expression defines a subset of GABAergic interneurons and their precursors in the developing murine cerebellum. , 1999, Journal of neurobiology.

[96]  Y Yarom,et al.  Electrotonic Coupling Interacts with Intrinsic Properties to Generate Synchronized Activity in Cerebellar Networks of Inhibitory Interneurons , 1999, The Journal of Neuroscience.

[97]  M. Giustetto,et al.  Postsynaptic Colocalization of Gephyrin and GABAA Receptors , 1999, Annals of the New York Academy of Sciences.

[98]  M. Glickstein,et al.  The anatomy of the cerebellum , 1998, Trends in Neurosciences.

[99]  J M Bower,et al.  Quantitative Golgi study of the rat cerebellar molecular layer interneurons using principal component analysis , 1998, The Journal of comparative neurology.

[100]  C. Pouzat,et al.  Developmental Regulation of Basket/Stellate Cell→Purkinje Cell Synapses in the Cerebellum , 1997, The Journal of Neuroscience.

[101]  M. Häusser,et al.  Tonic Synaptic Inhibition Modulates Neuronal Output Pattern and Spatiotemporal Synaptic Integration , 1997, Neuron.

[102]  William R. Softky,et al.  Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons. , 1996, Journal of neurophysiology.

[103]  B. Birren,et al.  Disruption of the nuclear hormone receptor RORα in staggerer mice , 1996, Nature.

[104]  J. Altman,et al.  Development of the Cerebellar System: In Relation to Its Evolution, Structure, and Functions , 1996 .

[105]  B. Birren,et al.  Disruption of the nuclear hormone receptor RORalpha in staggerer mice. , 1996, Nature.

[106]  Lei Zhang,et al.  Generation of Cerebellar Interneurons from Dividing Progenitors in White Matter , 1996, Neuron.

[107]  R. Llinás,et al.  Dynamic organization of motor control within the olivocerebellar system , 1995, Nature.

[108]  B. Barbour Synaptic currents evoked in purkinje cells by stimulating individual granule cells , 1993, Neuron.

[109]  A. Konnerth,et al.  Synaptic currents in cerebellar Purkinje cells. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[110]  R. Hawkes,et al.  Zebrin II: A polypeptide antigen expressed selectively by purkinje cells reveals compartments in rat and fish cerebellum , 1990, The Journal of comparative neurology.

[111]  C. Heizmann,et al.  Parvalbumin in Cat Brain: Isolation, Characterization, and Localization , 1986, Journal of neurochemistry.

[112]  S. Palay,et al.  Sagittal cerebellar microbands of taurine neurons: immunocytochemical demonstration by using antibodies against the taurine-synthesizing enzyme cysteine sulfinic acid decarboxylase. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[113]  J. Eccles,et al.  Medial reticular and perihypoglossal neurons projecting to cerebellum. , 1976, Journal of neurophysiology.

[114]  Prof. Dr. Sanford L. Palay,et al.  Cerebellar Cortex , 1974, Springer Berlin Heidelberg.

[115]  J Szentágothai,et al.  Quantitative histological analysis of the cerebellar cortex in the cat. 3. Structural organization of the molecular layer. , 1971, Brain research.

[116]  J Szentágothai,et al.  Quantitative histological analysis of the cerebellar cortex in the cat. II. Cell numbers and densities in the granular layer. , 1971, Brain research.

[117]  J. Eccles Circuits in the cerebellar control of movement. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[118]  J. Eccles,et al.  Inhibitory systems in the cerebellar cortex. , 1965, Proceedings of the Australian Association of Neurologists.

[119]  Ramón y Cajal,et al.  Histologie du système nerveux de l'homme & des vertébrés , 1909 .