Effect of Carrier-Doping on the Thermoelectric Properties of Narrow-Bandgap (Fe,Ru)Ga3 Intermetallic Compounds

[1]  R. Cardoso‐Gil,et al.  Substitution Solid Solutions FeGa3−xEx and Their Thermoelectric Properties , 2014, Journal of Electronic Materials.

[2]  K. Kimura,et al.  Effects of Transition Metal (TM: Co, Rh, Ni and Pd) Substitution for Ru on Thermoelectric Properties for Intermetallic Compound RuGa2 , 2013 .

[3]  K. Kimura,et al.  Effect of electron doping on thermoelectric properties for narrow-bandgap intermetallic compound RuGa2 , 2013 .

[4]  Y. Hadano,et al.  Ferromagnetic instability in a doped band gap semiconductor FeGa 3 , 2012, 1210.5360.

[5]  K. Kimura,et al.  Thermoelectric properties of FeGa3-type narrow-bandgap intermetallic compounds Ru(Ga,In)3: Experimental and calculational studies , 2012 .

[6]  K. Koepernik,et al.  Electronic and thermoelectric properties of RuIn3−xAx (A = Sn, Zn) , 2011, 1110.3607.

[7]  Gloria J. Lehr,et al.  Influence of p- and n-type doping on the transport properties of the Nowotny chimney-ladder compounds RuAl_2 and RuGa_2 , 2011 .

[8]  R. Cardoso‐Gil,et al.  RuIn_3-xSn_x, RuIn_3-xZn_x, and Ru_1-yIn_3—new thermoelectrics based on the semiconductor RuIn_3 , 2011 .

[9]  Y. Hadano,et al.  Electronic structure of a narrow-gap semiconductor FeGa3 investigated by photoemission and inverse photoemission spectroscopies , 2011 .

[10]  K. Kimura,et al.  Thermoelectric Properties of the Narrow-Gap Intermetallic Compound Ga2Ru: Effect of Re Substitution for Ru Atoms , 2011 .

[11]  N. Haldolaarachchige,et al.  Effect of chemical doping on the thermoelectric properties of FeGa3 , 2011, 1101.1949.

[12]  K. Kimura,et al.  Composition dependence of thermoelectric properties of binary narrow-gap Ga67−xRu33+x compound , 2010 .

[13]  N. Ohya,et al.  First-principles study of type-I and type-VIII Ba8Ga16Sn30 clathrates , 2010 .

[14]  K. Kimura,et al.  Thermoelectric Properties of Binary Semiconducting Intermetallic Compounds Al2Ru and Ga2Ru Synthesized by Spark Plasma Sintering Process , 2010 .

[15]  S. Yamanaka,et al.  Synthesis and thermoelectric properties of silicon- and manganese-doped Ru1−xFexAl2 , 2010 .

[16]  S. Narazu,et al.  Thermoelectric and Magnetic Properties of a Narrow-Gap Semiconductor FeGa_3(Condensed matter: electronic structure and electrical, magnetic, and optical properties) , 2009 .

[17]  R. Eguchi,et al.  Electronic structure ofFeSi1−xGexandFeGa3investigated by soft x-ray photoelectron spectroscopy complementary to x-ray emission spectroscopy , 2008 .

[18]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[19]  H. Fukuoka,et al.  Ba8Ga16Sn30 with type-I clathrate structure: Drastic suppression of heat conduction , 2008 .

[20]  Matsunami Masaharu,et al.  Observation of Energy Gap in FeGa3 , 2008 .

[21]  A. Watanabe,et al.  Electronic structures of semiconducting FeGa3, RuGa3, OsGa3, and RuIn3 with the CoGa3- or the FeGa3-type structure , 2006 .

[22]  Y. Kuo,et al.  Electrical and thermoelectric properties of the intermetallic FeGa3 , 2005 .

[23]  A. Yamamoto,et al.  Thermoelectric properties of semiconductorlike intermetallic compounds TMGa3 (TM=Fe, Ru, and Os) , 2004 .

[24]  M. Boström,et al.  FeGa3 and RuGa3: Semiconducting intermetallic compounds , 2002 .

[25]  Watson,et al.  Lower limit to the thermal conductivity of disordered crystals. , 1992, Physical review. B, Condensed matter.