Kernel intuitionistic fuzzy entropy clustering for MRI image segmentation

Fuzzy entropy clustering (FEC) is a variant of hard c-means clustering which utilizes the concept of entropy. However, the performance of the FEC method is sensitive to the noise and the fuzzy entropy parameter as it gives incorrect clustering and coincident cluster sometimes. In this work, a variant of the FEC method is proposed which incorporates advantage of intuitionistic fuzzy set and kernel distance measure termed as kernel intuitionistic fuzzy entropy c-means (KIFECM). While intuitionistic fuzzy set allows to handle uncertainty and vagueness associated with data, kernel distance measure helps to reveal the inherent nonlinear structures present in data without increasing the computational complexity. In this work, two popular intuitionistic fuzzy sets generators, Sugeno and Yager’s negation function, have been utilized for generating intuitionistic fuzzy sets corresponding to data. The performance of the proposed method has been evaluated over two synthetic datasets, Iris dataset, publicly available simulated human brain MRI dataset and IBSR real human brain MRI dataset. The experimental results show the superior performance of the proposed KIFECM over FEC, FCM, IFCM, UPCA, PTFECM and KFEC in terms of several performance measures such as partition coefficient, partition entropy, average segmentation accuracy, dice score, Jaccard score, false positive ratio and false negative ratio.

[1]  Nikos Pelekis,et al.  Intuitionistic Fuzzy Clustering with Applications in Computer Vision , 2008, ACIVS.

[2]  Shih-Fu Chang,et al.  Image Retrieval: Current Techniques, Promising Directions, and Open Issues , 1999, J. Vis. Commun. Image Represent..

[3]  Daoqiang Zhang,et al.  Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[4]  Humberto Bustince,et al.  Intuitionistic fuzzy generators Application to intuitionistic fuzzy complementation , 2000, Fuzzy Sets Syst..

[5]  Bostjan Likar,et al.  A Review of Methods for Correction of Intensity Inhomogeneity in MRI , 2007, IEEE Transactions on Medical Imaging.

[6]  M. A. Balafar Fuzzy C-mean based brain MRI segmentation algorithms , 2012, Artificial Intelligence Review.

[7]  R. K. Agrawal,et al.  Possibilistic Intuitionistic Fuzzy c-Means Clustering Algorithm for MRI Brain Image Segmentation , 2015, Int. J. Artif. Intell. Tools.

[8]  Chunming Li,et al.  A Level Set Method for Image Segmentation in the Presence of Intensity Inhomogeneities With Application to MRI , 2011, IEEE Transactions on Image Processing.

[9]  Zeshui Xu,et al.  Kernel C-Means Clustering Algorithms for Hesitant Fuzzy Information in Decision Making , 2017, International Journal of Fuzzy Systems.

[10]  Dhirendra Kumar,et al.  A modified intuitionistic fuzzy c-means clustering approach to segment human brain MRI image , 2018, Multimedia Tools and Applications.

[11]  Edwin N. Cook,et al.  Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks , 1997, IEEE Transactions on Medical Imaging.

[12]  Jerry L Prince,et al.  Current methods in medical image segmentation. , 2000, Annual review of biomedical engineering.

[13]  Kuo-Chen Hung,et al.  Intuitionistic fuzzy $$c$$c-means clustering algorithm with neighborhood attraction in segmenting medical image , 2015, Soft Comput..

[14]  James C. Bezdek,et al.  Objective Function Clustering , 1981 .

[15]  Jamuna Kanta Sing,et al.  A New Fuzzy Clustering Algorithm for Brain MR Image Segmentation Using Gaussian Probabilistic and Entropy-Based Likelihood Measures , 2018, 2018 International Conference on Communication, Computing and Internet of Things (IC3IoT).

[16]  D. Tran,et al.  Fuzzy entropy clustering , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[17]  Arnold W. M. Smeulders,et al.  Interaction in the segmentation of medical images: A survey , 2001, Medical Image Anal..

[18]  LinKuo-Ping,et al.  Intuitionistic fuzzy $$c$$c-means clustering algorithm with neighborhood attraction in segmenting medical image , 2015, SOCO 2015.

[19]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .

[20]  Kuo-Ping Lin,et al.  A Novel Evolutionary Kernel Intuitionistic Fuzzy $C$ -means Clustering Algorithm , 2014, IEEE Transactions on Fuzzy Systems.

[21]  James M. Keller,et al.  A possibilistic fuzzy c-means clustering algorithm , 2005, IEEE Transactions on Fuzzy Systems.

[22]  J. Mercer Functions of Positive and Negative Type, and their Connection with the Theory of Integral Equations , 1909 .

[23]  Fu Haijun,et al.  Fuzzy Entropy Clustering Using Possibilistic Approach , 2011 .

[24]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[25]  Zhimin Wang,et al.  An adaptive spatial information-theoretic fuzzy clustering algorithm for image segmentation , 2013, Comput. Vis. Image Underst..

[26]  Michael W. Berry,et al.  Survey of Text Mining , 2003, Springer New York.

[27]  Sim Heng Ong,et al.  Automated brain tumor segmentation using kernel dictionary learning and superpixel-level features , 2016, 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

[28]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[29]  Tzong-Jer Chen,et al.  Fuzzy c-means clustering with spatial information for image segmentation , 2006, Comput. Medical Imaging Graph..

[30]  Nikos Pelekis,et al.  Fuzzy clustering of intuitionistic fuzzy data , 2008, Int. J. Bus. Intell. Data Min..

[31]  James M. Keller,et al.  Will the real iris data please stand up? , 1999, IEEE Trans. Fuzzy Syst..

[32]  Thomas M. Cover,et al.  Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications in Pattern Recognition , 1965, IEEE Trans. Electron. Comput..

[33]  Zexuan Ji,et al.  Retraction notice to “A framework with modified fast FCM for brain MR images segmentation” [Pattern Recognit. 44/5 (2011) 999–1013] , 2014 .

[34]  Witold Pedrycz,et al.  Kernel-based fuzzy clustering and fuzzy clustering: A comparative experimental study , 2010, Fuzzy Sets Syst..

[35]  Naveen Kumar,et al.  Improved fuzzy entropy clustering algorithm for MRI brain image segmentation , 2014, Int. J. Imaging Syst. Technol..

[36]  Francisco Herrera,et al.  A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms , 2011, Swarm Evol. Comput..

[37]  Tamalika Chaira,et al.  A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images , 2011, Appl. Soft Comput..

[38]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[39]  Koen L. Vincken,et al.  Automatic segmentation of different-sized white matter lesions by voxel probability estimation , 2004, Medical Image Anal..

[40]  Ron Kikinis,et al.  Markov random field segmentation of brain MR images , 1997, IEEE Transactions on Medical Imaging.

[41]  Torsten Rohlfing,et al.  Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains , 2004, NeuroImage.

[42]  Zeshui Xu,et al.  Intuitionistic fuzzy C-means clustering algorithms , 2010 .

[43]  Abdul Rahman Ramli,et al.  Review of brain MRI image segmentation methods , 2010, Artificial Intelligence Review.

[44]  Stelios Krinidis,et al.  A Robust Fuzzy Local Information C-Means Clustering Algorithm , 2010, IEEE Transactions on Image Processing.

[45]  Patrick Siarry,et al.  Improved spatial fuzzy c-means clustering for image segmentation using PSO initialization, Mahalanobis distance and post-segmentation correction , 2013, Digit. Signal Process..

[46]  R. Yager ON THE MEASURE OF FUZZINESS AND NEGATION Part I: Membership in the Unit Interval , 1979 .

[47]  Thomas Schaaf,et al.  Confidence measures for spontaneous speech recognition , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[48]  Patrick Siarry,et al.  Integrating fuzzy entropy clustering with an improved PSO for MRI brain image segmentation , 2018, Appl. Soft Comput..

[49]  M. Friedman The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance , 1937 .

[50]  Janusz Kacprzyk,et al.  Distances between intuitionistic fuzzy sets , 2000, Fuzzy Sets Syst..

[51]  Ronald R. Yager,et al.  On the entropy of fuzzy measures , 2000, IEEE Trans. Fuzzy Syst..

[52]  Kuo-Lung Wu,et al.  Unsupervised possibilistic clustering , 2006, Pattern Recognit..

[53]  R. Iman,et al.  Approximations of the critical region of the fbietkan statistic , 1980 .

[54]  Masao Mukaidono,et al.  Gaussian clustering method based on maximum-fuzzy-entropy interpretation , 1999, Fuzzy Sets Syst..

[55]  Gilberto Arenas-Díaz,et al.  Fuzzy measures and fuzzy integrals , 2013 .

[56]  Jian Xiao,et al.  A modified interval type-2 fuzzy C-means algorithm with application in MR image segmentation , 2013, Pattern Recognit. Lett..

[57]  Jamshid Shanbehzadeh,et al.  Fast automatic medical image segmentation based on spatial kernel fuzzy c-means on level set method , 2014, Machine Vision and Applications.

[58]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[59]  Ronald R. Yager,et al.  On the Measure of Fuzziness and Negation. II. Lattices , 1980, Inf. Control..

[60]  M. Sugeno,et al.  Fuzzy Measures and Integrals: Theory and Applications , 2000 .

[61]  Li Wang,et al.  Level set segmentation of brain magnetic resonance images based on local Gaussian distribution fitting energy , 2010, Journal of Neuroscience Methods.

[62]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets: past, present and future , 2003, EUSFLAT Conf..

[63]  Aditi Sharan,et al.  An improved intuitionistic fuzzy c-means clustering algorithm incorporating local information for brain image segmentation , 2016, Appl. Soft Comput..

[64]  E. Hoffman,et al.  Quantitation in Positron Emission Computed Tomography: 1. Effect of Object Size , 1979, Journal of computer assisted tomography.

[65]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[66]  Mie Sato,et al.  A gradient magnitude based region growing algorithm for accurate segmentation , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[67]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[68]  S. R. Kannan,et al.  Effective FCM noise clustering algorithms in medical images , 2013, Comput. Biol. Medicine.

[69]  Sankar K. Pal,et al.  Higher order fuzzy entropy and hybrid entropy of a set , 1992, Inf. Sci..

[70]  Himansu Sekhar Behera,et al.  Fuzzy C-Means (FCM) Clustering Algorithm: A Decade Review from 2000 to 2014 , 2015 .