Generalized elliptical distributions

ABSTRACT A family of distributions generated by an operator acting on generalized normal density is introduced. This family contains as particular cases many known distributions, including the generalized normal, generalized t, and generalized gamma distributions. Several mathematical properties of the family (including expansions, characteristic function, moments, cumulants, and order statistics properties) are derived. Estimation procedures are derived too by the method of moments, method of maximum likelihood, and the method of empirical characteristic function. A real data application is presented. Finally, extensions to the multivariate case are outlined.

[1]  P. Embrechts,et al.  Risk Management: Correlation and Dependence in Risk Management: Properties and Pitfalls , 2002 .

[2]  I. J. Schoenberg Metric spaces and completely monotone functions , 1938 .

[3]  Y. Yin Limiting spectral distribution for a class of random matrices , 1986 .

[4]  D. Fourdrinier,et al.  Estimation of the mean of a spherically symmetric distribution with constraints on the norm , 2000 .

[5]  James B. McDonald,et al.  Model selection: some generalized distributions , 1987 .

[6]  Laurens de Haan,et al.  Fighting the arch–enemy with mathematics‘ , 1990 .

[7]  J. Pickands Statistical Inference Using Extreme Order Statistics , 1975 .

[8]  Dayanand N. Naik,et al.  Estimation of interclass correlation via a Kotz-type distribution , 2006, Comput. Stat. Data Anal..

[9]  Francis Galton F.R.S. IV. Statistics by intercomparison, with remarks on the law of frequency of error , 1875 .

[10]  A. Azzalini A class of distributions which includes the normal ones , 1985 .

[11]  R. C. Merton,et al.  On Estimating the Expected Return on the Market: An Exploratory Investigation , 1980 .

[12]  Rafael Schmidt,et al.  Credit Risk Modelling and Estimation via Elliptical Copulae , 2003 .

[13]  S. Coles,et al.  An Introduction to Statistical Modeling of Extreme Values , 2001 .

[14]  I. Johnstone On the distribution of the largest eigenvalue in principal components analysis , 2001 .

[15]  David E. Tyler A Distribution-Free $M$-Estimator of Multivariate Scatter , 1987 .

[16]  Minimax bias-robust estimation of the dispersion matrix of a multivariate distribution , 1998 .

[17]  D. Dey,et al.  A General Class of Multivariate Skew-Elliptical Distributions , 2001 .

[18]  S. Ross The arbitrage theory of capital asset pricing , 1976 .

[19]  R. Fisher,et al.  Limiting forms of the frequency distribution of the largest or smallest member of a sample , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[20]  S. Kotz,et al.  Symmetric Multivariate and Related Distributions , 1989 .

[21]  S. Kotz,et al.  Correlation and dependence , 2001 .

[22]  Z. Ying,et al.  Random walk, sequential analysis and related topics : a festschrift in honor of Yuan-Shih Chow, Fudan University, Shanghai, China, 18-19 July 2004 , 2006 .

[23]  E. Stacy A Generalization of the Gamma Distribution , 1962 .

[24]  D. Naik,et al.  Estimation of Sib–Sib Correlation via a Kotz-Type Density Function , 2007 .

[25]  S. Kotz,et al.  Characteristic Functions of a Class of Elliptic Distributions , 1994 .

[26]  H. Joe Multivariate models and dependence concepts , 1998 .

[27]  Samuel Kotz,et al.  Some extremal type elliptical distributions , 2001 .

[28]  S. Resnick Extreme Values, Regular Variation, and Point Processes , 1987 .

[29]  Covariance matrices of quadratic forms in elliptical distributions , 1994 .

[30]  E. Wigner On the Distribution of the Roots of Certain Symmetric Matrices , 1958 .

[31]  P. Rousseeuw,et al.  Breakdown Points of Affine Equivariant Estimators of Multivariate Location and Covariance Matrices , 1991 .

[32]  F. Hiai,et al.  The semicircle law, free random variables, and entropy , 2006 .

[33]  B. Eynard,et al.  Random matrices. , 2015, 1510.04430.

[34]  R. Nelsen An Introduction to Copulas , 1998 .

[35]  M. Bilodeau,et al.  Theory of multivariate statistics , 1999 .

[36]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[37]  B. V. Praag,et al.  Elliptical multivariate analysis , 1989 .

[38]  C. Radhakrishna Rao,et al.  Efficient Estimates and Optimum Inference Procedures in Large Samples , 1962 .

[39]  Héctor W. Gómez,et al.  A new family of slash-distributions with elliptical contours , 2007 .

[40]  K. Chu Estimation and decision for linear systems with elliptical random processes , 1972, CDC 1972.

[41]  Markus Junker Modelling, Estimating and Validating Multidimensional Distribution Functions -With Applications to Risk Management- , 2003 .

[42]  S. Kotz Multivariate Distributions at a Cross Road , 1975 .

[43]  A. Azzalini,et al.  The multivariate skew-normal distribution , 1996 .

[44]  Dayanand N. Naik,et al.  A Kotz-Type Distribution for Multivariate Statistical Inference , 2006 .

[45]  Yohai Victor,et al.  The maximum bias of robust covariances , 1990 .

[46]  Kai-Tai Fang,et al.  Maximum‐likelihood estimates and likelihood‐ratio criteria for multivariate elliptically contoured distributions , 1986 .

[47]  R. Maronna Robust $M$-Estimators of Multivariate Location and Scatter , 1976 .

[48]  Wolfgang Breymann,et al.  Dependence structures for multivariate high-frequency data in finance , 2003 .

[49]  Richard A. Davis,et al.  Introduction to time series and forecasting , 1998 .

[50]  V. Marčenko,et al.  DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .

[51]  S. Hassani Mathematical physics : a modern introduction to Its foundations , 2013 .

[52]  S. Kotz,et al.  Multivariate θ-generalized normal distributions , 1973 .

[53]  E. Hashorva Asymptotics for Kotz Type III elliptical distributions , 2008, 0811.0662.

[54]  Harry Joe,et al.  Parametric families of multivariate distributions with given margins , 1993 .

[55]  R. Gutiérrez-Sánchez,et al.  Efficient linear estimation problem in the bivariate Kotz distribution under dependence assumptions , 2006 .

[56]  Saralees Nadarajah,et al.  On the characteristic function of the generalized normal distribution , 2010 .

[57]  K. Mardia Statistics of Directional Data , 1972 .

[58]  A. Azzalini,et al.  Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution , 2003, 0911.2342.

[59]  R. Beaver,et al.  Skewed multivariate models related to hidden truncation and/or selective reporting , 2002 .

[60]  James B. McDonald,et al.  Partially Adaptive Estimation of Regression Models via the Generalized T Distribution , 1988, Econometric Theory.

[61]  A. McNeil,et al.  KENDALL'S TAU FOR ELLIPTICAL DISTRIBUTIONS ∗ , 2003 .

[62]  Douglas Kelker,et al.  DISTRIBUTION THEORY OF SPHERICAL DISTRIBUTIONS AND A LOCATION-SCALE PARAMETER GENERALIZATION , 2016 .

[63]  W. Sharpe CAPITAL ASSET PRICES: A THEORY OF MARKET EQUILIBRIUM UNDER CONDITIONS OF RISK* , 1964 .

[64]  W. Ziemba,et al.  The Effect of Errors in Means, Variances, and Covariances on Optimal Portfolio Choice , 1993 .

[65]  Ernst Eberlein,et al.  Generalized Hyperbolic and Inverse Gaussian Distributions: Limiting Cases and Approximation of Processes , 2003 .

[66]  J. Lintner THE VALUATION OF RISK ASSETS AND THE SELECTION OF RISKY INVESTMENTS IN STOCK PORTFOLIOS AND CAPITAL BUDGETS , 1965 .

[67]  Manfred Gilli,et al.  An Application of Extreme Value Theory for Measuring Risk , 2003 .

[68]  Alexander Kempf,et al.  How to Incorporate Estimation Risk into Markowitz Optimization , 2002 .

[69]  J. Tobin Liquidity Preference as Behavior towards Risk , 1958 .

[70]  R. Y. Liu,et al.  On a notion of simplicial depth. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[71]  Hari M. Srivastava,et al.  Some families of Mathieu a-series and alternating Mathieu a-series , 2006, Appl. Math. Comput..

[72]  J. Durbin,et al.  Testing for serial correlation in least squares regression. I. , 1950, Biometrika.

[73]  J. Bouchaud,et al.  Theory of financial risks : from statistical physics to risk management , 2000 .

[74]  L. Dümbgen On Tyler's M-Functional of Scatter in High Dimension , 1998 .

[75]  K. Mosler Central Regions and Dependency , 2003 .

[76]  B. Mandelbrot The Variation of Certain Speculative Prices , 1963 .

[77]  David E. Tyler Statistical analysis for the angular central Gaussian distribution on the sphere , 1987 .

[78]  Francisco J. Prieto,et al.  Multivariate Outlier Detection and Robust Covariance Matrix Estimation , 2001, Technometrics.

[79]  S. Visuri,et al.  Array and multichannel signal processing using nonparametric statistics , 2001 .

[80]  J. Hosking L‐Moments: Analysis and Estimation of Distributions Using Linear Combinations of Order Statistics , 1990 .

[81]  E. Fama The Behavior of Stock-Market Prices , 1965 .

[82]  Arjun K. Gupta,et al.  Estimation of the precision matrix of multivariate Kotz type model , 2009, J. Multivar. Anal..

[83]  Bell Telephone,et al.  ROBUST ESTIMATES, RESIDUALS, AND OUTLIER DETECTION WITH MULTIRESPONSE DATA , 1972 .

[84]  S. Nadarajah A generalized normal distribution , 2005 .

[85]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[86]  G. Simons,et al.  On the theory of elliptically contoured distributions , 1981 .

[87]  O. Barndorff-Nielsen,et al.  Normal Variance-Mean Mixtures and z Distributions , 1982 .

[88]  James B. McDonald,et al.  A general methodology for determining distributional forms with applications in reliability , 1987 .

[89]  Rafael Schmidt,et al.  Tail dependence for elliptically contoured distributions , 2002, Math. Methods Oper. Res..

[90]  S. J. Devlin,et al.  Robust Estimation of Dispersion Matrices and Principal Components , 1981 .

[91]  H. P. Lopuhaä On the relation between S-estimators and M-estimators of multivariate location and covariance , 1989 .

[92]  David E. Tyler,et al.  Maximum likelihood estimation for the wrapped Cauchy distribution , 1988 .

[93]  P. Rousseeuw,et al.  A fast algorithm for the minimum covariance determinant estimator , 1999 .

[94]  Weiwen Miao,et al.  A New Test of Symmetry about an Unknown Median , 2006 .

[95]  S. Kotz,et al.  The Meta-elliptical Distributions with Given Marginals , 2002 .

[96]  J. Durbin,et al.  Testing for serial correlation in least squares regression. II. , 1950, Biometrika.

[97]  A. McNeil Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory , 1997, ASTIN Bulletin.