Tempered fractional calculus
暂无分享,去创建一个
Mark M. Meerschaert | Jinghua Chen | Farzad Sabzikar | M. Meerschaert | F. Sabzikar | Jinghua Chen | Farzad Sabzikar
[1] Koponen,et al. Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[2] Mihály Kovács,et al. Fractional Reproduction-Dispersal Equations and Heavy Tail Dispersal Kernels , 2007, Bulletin of mathematical biology.
[3] J. Rosínski. Tempering stable processes , 2007 .
[4] M. Taqqu,et al. Integration questions related to fractional Brownian motion , 2000 .
[5] Santos B. Yuste,et al. An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations , 2004, SIAM J. Numer. Anal..
[6] Mark M. Meerschaert,et al. Limit theorems for continuous-time random walks with infinite mean waiting times , 2004, Journal of Applied Probability.
[7] M. Yor,et al. The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .
[8] Santos B. Yuste,et al. On an explicit finite difference method for fractional diffusion equations , 2003, ArXiv.
[9] A. Einstein. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.
[10] A. Iomin,et al. Migration and proliferation dichotomy in tumor-cell invasion. , 2006, Physical review letters.
[11] Agnieszka Wyłomańska,et al. Coupled continuous-time random walk approach to the Rachev–Rüschendorf model for financial data , 2009 .
[12] Mark M. Meerschaert,et al. Gaussian setting time for solute transport in fluvial systems , 2011 .
[13] M. Yor,et al. Stochastic Volatility for Lévy Processes , 2003 .
[14] Hyunjoong Kim,et al. Functional Analysis I , 2017 .
[15] Timothy R. Ginn,et al. Fractional advection‐dispersion equation: A classical mass balance with convolution‐Fickian Flux , 2000 .
[16] Mark M. Meerschaert,et al. Linking fluvial bed sediment transport across scales , 2012 .
[17] R. Magin. Fractional Calculus in Bioengineering , 2006 .
[18] Richard A. Davis,et al. Time Series: Theory and Methods (2nd ed.). , 1992 .
[19] M. Meerschaert,et al. Parameter Estimation for the Truncated Pareto Distribution , 2006 .
[20] Karina Weron,et al. Fractional Fokker-Planck dynamics: stochastic representation and computer simulation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.
[21] H. Kober. ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .
[22] Ward Whitt,et al. An Introduction to Stochastic-Process Limits and their Application to Queues , 2002 .
[23] V. E. Tarasov. Fractional Vector Calculus and Fractional Maxwell's Equations , 2008, 0907.2363.
[24] R. Gorenflo,et al. Fractional calculus and continuous-time finance II: the waiting-time distribution , 2000, cond-mat/0006454.
[25] A. Davenport. The spectrum of horizontal gustiness near the ground in high winds , 1961 .
[26] Ahsan Kareem,et al. ARMA systems in wind engineering , 1990 .
[27] Enrico Scalas. Five Years of Continuous-time Random Walks in Econophysics , 2005 .
[28] Mark M. Meerschaert,et al. Tempered stable laws as random walk limits , 2010, 1007.3474.
[29] Fredrik T. Rantakyrö,et al. ALMA Memo No. 497 ANALYSIS OF WIND DATA GATHERED AT CHAJNANTOR , 2004 .
[30] J. Klafter,et al. The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .
[31] M. Meerschaert,et al. Finite difference approximations for fractional advection-dispersion flow equations , 2004 .
[32] Enrico Scalas,et al. Coupled continuous time random walks in finance , 2006 .
[33] F. Mainardi. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models , 2010 .
[34] Ole E. Barndorff-Nielsen,et al. Processes of normal inverse Gaussian type , 1997, Finance Stochastics.
[35] Mark M Meerschaert,et al. STOCHASTIC INTEGRATION FOR TEMPERED FRACTIONAL BROWNIAN MOTION. , 2014, Stochastic processes and their applications.
[36] D. Benson,et al. Fractional Dispersion, Lévy Motion, and the MADE Tracer Tests , 2001 .
[37] V. Tikhomirov. Wiener Spirals and Some Other Interesting Curves in a Hilbert Space , 1991 .
[38] Mark M. Meerschaert,et al. Tempered Fractional Stable Motion , 2016 .
[39] Stanley,et al. Stochastic process with ultraslow convergence to a Gaussian: The truncated Lévy flight. , 1994, Physical review letters.
[40] Vijay P. Singh,et al. Parameter estimation for fractional dispersion model for rivers , 2006 .
[41] M. Meerschaert,et al. Tempered anomalous diffusion in heterogeneous systems , 2008 .
[42] Wojbor A. Woyczyński,et al. Models of anomalous diffusion: the subdiffusive case , 2005 .
[43] Serge Cohen,et al. Gaussian approximation of multivariate Lévy processes with applications to simulation of tempered stable processes , 2007 .
[44] Hui-Hsiung Kuo,et al. White noise distribution theory , 1996 .
[45] O. Marichev,et al. Fractional Integrals and Derivatives: Theory and Applications , 1993 .
[46] M. Meerschaert,et al. Stochastic Models for Fractional Calculus , 2011 .
[47] David A. Benson,et al. Subordinated advection‐dispersion equation for contaminant transport , 2001 .
[48] Mark M. Meerschaert,et al. Space-time fractional diffusion on bounded domains , 2012 .
[49] Á. Cartea,et al. Fluid limit of the continuous-time random walk with general Lévy jump distribution functions. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.
[50] Kun Zhou,et al. Analysis and Approximation of Nonlocal Diffusion Problems with Volume Constraints , 2012, SIAM Rev..
[51] J. Klafter,et al. The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .
[52] M. Meerschaert. Fractional calculus, anomalous diffusion, and probability , 2011 .
[53] D. Applebaum. Stable non-Gaussian random processes , 1995, The Mathematical Gazette.
[54] Richard A. Davis,et al. Time Series: Theory and Methods , 2013 .
[55] P. Abry,et al. Wavelets, spectrum analysis and 1/ f processes , 1995 .
[56] Ralf Metzler,et al. Natural cutoff in Lévy flights caused by dissipative nonlinearity. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.
[57] George M. Zaslavsky,et al. Fractional kinetic equation for Hamiltonian chaos , 1994 .
[58] Enrico Scalas,et al. Fractional Calculus and Continuous-Time Finance III : the Diffusion Limit , 2001 .
[59] K. Miller,et al. An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .
[60] Weicheng Cui,et al. A state-of-the-art review on fatigue life prediction methods for metal structures , 2002 .
[61] R. Gorenflo,et al. Fractional calculus and continuous-time finance , 2000, cond-mat/0001120.
[62] Mark M. Meerschaert,et al. Parameter estimation for tempered power law distributions , 2009 .
[63] Patrick Flandrin,et al. On the spectrum of fractional Brownian motions , 1989, IEEE Trans. Inf. Theory.
[64] Fawang Liu,et al. Numerical solution of the space fractional Fokker-Planck equation , 2004 .
[65] R. Hilfer. Applications Of Fractional Calculus In Physics , 2000 .
[66] D. Benson,et al. Eulerian derivation of the fractional advection-dispersion equation. , 2001, Journal of contaminant hydrology.
[67] Rina Schumer,et al. Fractional Dispersion, Lévy Motion, and the MADE Tracer Tests , 2001 .
[68] R. Metzler,et al. Strange kinetics of single molecules in living cells , 2012 .
[69] J. Klafter,et al. Anomalous diffusion spreads its wings , 2005 .
[70] J. P. Roop. Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R 2 , 2006 .
[71] Mark M Meerschaert,et al. Hydraulic conductivity fields: Gaussian or not? , 2013, Water resources research.
[72] Mark M. Meerschaert,et al. A second-order accurate numerical approximation for the fractional diffusion equation , 2006, J. Comput. Phys..
[73] B. Mandelbrot,et al. Fractional Brownian Motions, Fractional Noises and Applications , 1968 .
[74] Fawang Liu,et al. Numerical simulation for solute transport in fractal porous media , 2004 .
[75] A. Einstein. On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heart , 1905 .
[76] Mark M. Meerschaert,et al. Tempered stable Lévy motion and transient super-diffusion , 2010, J. Comput. Appl. Math..
[77] D. Benson,et al. Application of a fractional advection‐dispersion equation , 2000 .
[78] M. Meerschaert,et al. Tempered fractional Brownian motion , 2013 .
[79] V. Ervin,et al. Variational solution of fractional advection dispersion equations on bounded domains in ℝd , 2007 .
[80] H. R. Hicks,et al. Numerical methods for the solution of partial difierential equations of fractional order , 2003 .
[81] Jing-Jong Jang,et al. Analysis of Maximum Wind force for Offshore Structure Design , 2009, Journal of Marine Science and Technology.
[82] Mark M. Meerschaert,et al. Triangular array limits for continuous time random walks , 2008 .
[83] R. Metzler,et al. Anomalous diffusion of phospholipids and cholesterols in a lipid bilayer and its origins. , 2012, Physical review letters.
[84] Yury F. Luchko,et al. Algorithms for the fractional calculus: A selection of numerical methods , 2005 .
[85] David J. Norton,et al. Mobile Offshore Platform Wind Loads , 1981 .
[86] Mark M. Meerschaert,et al. Tempered fractional time series model for turbulence in geophysical flows , 2014 .
[87] D. Nualart. Fractional Brownian motion , 2006 .