Tempered fractional calculus

Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.

[1]  Koponen,et al.  Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  Mihály Kovács,et al.  Fractional Reproduction-Dispersal Equations and Heavy Tail Dispersal Kernels , 2007, Bulletin of mathematical biology.

[3]  J. Rosínski Tempering stable processes , 2007 .

[4]  M. Taqqu,et al.  Integration questions related to fractional Brownian motion , 2000 .

[5]  Santos B. Yuste,et al.  An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations , 2004, SIAM J. Numer. Anal..

[6]  Mark M. Meerschaert,et al.  Limit theorems for continuous-time random walks with infinite mean waiting times , 2004, Journal of Applied Probability.

[7]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[8]  Santos B. Yuste,et al.  On an explicit finite difference method for fractional diffusion equations , 2003, ArXiv.

[9]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[10]  A. Iomin,et al.  Migration and proliferation dichotomy in tumor-cell invasion. , 2006, Physical review letters.

[11]  Agnieszka Wyłomańska,et al.  Coupled continuous-time random walk approach to the Rachev–Rüschendorf model for financial data , 2009 .

[12]  Mark M. Meerschaert,et al.  Gaussian setting time for solute transport in fluvial systems , 2011 .

[13]  M. Yor,et al.  Stochastic Volatility for Lévy Processes , 2003 .

[14]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[15]  Timothy R. Ginn,et al.  Fractional advection‐dispersion equation: A classical mass balance with convolution‐Fickian Flux , 2000 .

[16]  Mark M. Meerschaert,et al.  Linking fluvial bed sediment transport across scales , 2012 .

[17]  R. Magin Fractional Calculus in Bioengineering , 2006 .

[18]  Richard A. Davis,et al.  Time Series: Theory and Methods (2nd ed.). , 1992 .

[19]  M. Meerschaert,et al.  Parameter Estimation for the Truncated Pareto Distribution , 2006 .

[20]  Karina Weron,et al.  Fractional Fokker-Planck dynamics: stochastic representation and computer simulation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  H. Kober ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .

[22]  Ward Whitt,et al.  An Introduction to Stochastic-Process Limits and their Application to Queues , 2002 .

[23]  V. E. Tarasov Fractional Vector Calculus and Fractional Maxwell's Equations , 2008, 0907.2363.

[24]  R. Gorenflo,et al.  Fractional calculus and continuous-time finance II: the waiting-time distribution , 2000, cond-mat/0006454.

[25]  A. Davenport The spectrum of horizontal gustiness near the ground in high winds , 1961 .

[26]  Ahsan Kareem,et al.  ARMA systems in wind engineering , 1990 .

[27]  Enrico Scalas Five Years of Continuous-time Random Walks in Econophysics , 2005 .

[28]  Mark M. Meerschaert,et al.  Tempered stable laws as random walk limits , 2010, 1007.3474.

[29]  Fredrik T. Rantakyrö,et al.  ALMA Memo No. 497 ANALYSIS OF WIND DATA GATHERED AT CHAJNANTOR , 2004 .

[30]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[31]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .

[32]  Enrico Scalas,et al.  Coupled continuous time random walks in finance , 2006 .

[33]  F. Mainardi Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models , 2010 .

[34]  Ole E. Barndorff-Nielsen,et al.  Processes of normal inverse Gaussian type , 1997, Finance Stochastics.

[35]  Mark M Meerschaert,et al.  STOCHASTIC INTEGRATION FOR TEMPERED FRACTIONAL BROWNIAN MOTION. , 2014, Stochastic processes and their applications.

[36]  D. Benson,et al.  Fractional Dispersion, Lévy Motion, and the MADE Tracer Tests , 2001 .

[37]  V. Tikhomirov Wiener Spirals and Some Other Interesting Curves in a Hilbert Space , 1991 .

[38]  Mark M. Meerschaert,et al.  Tempered Fractional Stable Motion , 2016 .

[39]  Stanley,et al.  Stochastic process with ultraslow convergence to a Gaussian: The truncated Lévy flight. , 1994, Physical review letters.

[40]  Vijay P. Singh,et al.  Parameter estimation for fractional dispersion model for rivers , 2006 .

[41]  M. Meerschaert,et al.  Tempered anomalous diffusion in heterogeneous systems , 2008 .

[42]  Wojbor A. Woyczyński,et al.  Models of anomalous diffusion: the subdiffusive case , 2005 .

[43]  Serge Cohen,et al.  Gaussian approximation of multivariate Lévy processes with applications to simulation of tempered stable processes , 2007 .

[44]  Hui-Hsiung Kuo,et al.  White noise distribution theory , 1996 .

[45]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[46]  M. Meerschaert,et al.  Stochastic Models for Fractional Calculus , 2011 .

[47]  David A. Benson,et al.  Subordinated advection‐dispersion equation for contaminant transport , 2001 .

[48]  Mark M. Meerschaert,et al.  Space-time fractional diffusion on bounded domains , 2012 .

[49]  Á. Cartea,et al.  Fluid limit of the continuous-time random walk with general Lévy jump distribution functions. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  Kun Zhou,et al.  Analysis and Approximation of Nonlocal Diffusion Problems with Volume Constraints , 2012, SIAM Rev..

[51]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[52]  M. Meerschaert Fractional calculus, anomalous diffusion, and probability , 2011 .

[53]  D. Applebaum Stable non-Gaussian random processes , 1995, The Mathematical Gazette.

[54]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[55]  P. Abry,et al.  Wavelets, spectrum analysis and 1/ f processes , 1995 .

[56]  Ralf Metzler,et al.  Natural cutoff in Lévy flights caused by dissipative nonlinearity. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  George M. Zaslavsky,et al.  Fractional kinetic equation for Hamiltonian chaos , 1994 .

[58]  Enrico Scalas,et al.  Fractional Calculus and Continuous-Time Finance III : the Diffusion Limit , 2001 .

[59]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[60]  Weicheng Cui,et al.  A state-of-the-art review on fatigue life prediction methods for metal structures , 2002 .

[61]  R. Gorenflo,et al.  Fractional calculus and continuous-time finance , 2000, cond-mat/0001120.

[62]  Mark M. Meerschaert,et al.  Parameter estimation for tempered power law distributions , 2009 .

[63]  Patrick Flandrin,et al.  On the spectrum of fractional Brownian motions , 1989, IEEE Trans. Inf. Theory.

[64]  Fawang Liu,et al.  Numerical solution of the space fractional Fokker-Planck equation , 2004 .

[65]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[66]  D. Benson,et al.  Eulerian derivation of the fractional advection-dispersion equation. , 2001, Journal of contaminant hydrology.

[67]  Rina Schumer,et al.  Fractional Dispersion, Lévy Motion, and the MADE Tracer Tests , 2001 .

[68]  R. Metzler,et al.  Strange kinetics of single molecules in living cells , 2012 .

[69]  J. Klafter,et al.  Anomalous diffusion spreads its wings , 2005 .

[70]  J. P. Roop Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R 2 , 2006 .

[71]  Mark M Meerschaert,et al.  Hydraulic conductivity fields: Gaussian or not? , 2013, Water resources research.

[72]  Mark M. Meerschaert,et al.  A second-order accurate numerical approximation for the fractional diffusion equation , 2006, J. Comput. Phys..

[73]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[74]  Fawang Liu,et al.  Numerical simulation for solute transport in fractal porous media , 2004 .

[75]  A. Einstein On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heart , 1905 .

[76]  Mark M. Meerschaert,et al.  Tempered stable Lévy motion and transient super-diffusion , 2010, J. Comput. Appl. Math..

[77]  D. Benson,et al.  Application of a fractional advection‐dispersion equation , 2000 .

[78]  M. Meerschaert,et al.  Tempered fractional Brownian motion , 2013 .

[79]  V. Ervin,et al.  Variational solution of fractional advection dispersion equations on bounded domains in ℝd , 2007 .

[80]  H. R. Hicks,et al.  Numerical methods for the solution of partial difierential equations of fractional order , 2003 .

[81]  Jing-Jong Jang,et al.  Analysis of Maximum Wind force for Offshore Structure Design , 2009, Journal of Marine Science and Technology.

[82]  Mark M. Meerschaert,et al.  Triangular array limits for continuous time random walks , 2008 .

[83]  R. Metzler,et al.  Anomalous diffusion of phospholipids and cholesterols in a lipid bilayer and its origins. , 2012, Physical review letters.

[84]  Yury F. Luchko,et al.  Algorithms for the fractional calculus: A selection of numerical methods , 2005 .

[85]  David J. Norton,et al.  Mobile Offshore Platform Wind Loads , 1981 .

[86]  Mark M. Meerschaert,et al.  Tempered fractional time series model for turbulence in geophysical flows , 2014 .

[87]  D. Nualart Fractional Brownian motion , 2006 .