Antidamping-Torque-Induced Switching in Biaxial Antiferromagnetic Insulators.

We investigate the current-induced switching of the Néel order in NiO(001)/Pt heterostructures, which is manifested electrically via the spin Hall magnetoresistance. Significant reversible changes in the longitudinal and transverse resistances are found at room temperature for a current threshold lying in the range of 10^{7}  A/cm^{2}. The order-parameter switching is ascribed to the antiferromagnetic dynamics triggered by the (current-induced) antidamping torque, which orients the Néel order towards the direction of the writing current. This is in stark contrast to the case of antiferromagnets such as Mn_{2}Au and CuMnAs, where fieldlike torques induced by the Edelstein effect drive the Néel switching, therefore resulting in an orthogonal alignment between the Néel order and the writing current. Our findings can be readily generalized to other biaxial antiferromagnets, providing broad opportunities for all-electrical writing and readout in antiferromagnetic spintronics.

[1]  J. Hafner,et al.  Magnetic anisotropy of transition-metal dimers: Density functional calculations , 2009 .

[2]  Di Xiao,et al.  Terahertz Antiferromagnetic Spin Hall Nano-Oscillator. , 2015, Physical review letters.

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  D. Ralph,et al.  Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum , 2012, Science.

[5]  A. Brataas,et al.  Phenomenology of current-induced dynamics in antiferromagnets. , 2010, Physical review letters.

[6]  Y. Tserkovnyak,et al.  Antiferromagnetic textures and dynamics on the surface of a heavy metal , 2017, 1701.07863.

[7]  Eiji Saitoh,et al.  Theory of spin Hall magnetoresistance , 2013, 1302.1352.

[8]  A. Brataas,et al.  Enhanced gilbert damping in thin ferromagnetic films. , 2001, Physical review letters.

[9]  A. Manchon Spin Hall magnetoresistance in antiferromagnet/normal metal bilayers , 2016, 1609.06521.

[10]  J. Sinova,et al.  Spin Hall effects , 2015 .

[11]  B. Ivanov,et al.  Antiferromagnetic THz-frequency Josephson-like Oscillator Driven by Spin Current , 2016, Scientific Reports.

[12]  Georg Kresse,et al.  Fully unconstrained noncollinear magnetism within the projector augmented-wave method , 2000 .

[13]  Tao Liu,et al.  Spin–orbit torque-assisted switching in magnetic insulator thin films with perpendicular magnetic anisotropy , 2016, Nature Communications.

[14]  T. Oguchi Theory of Spin-Wave Interactions in Ferro- and Antiferromagnetism , 1960 .

[15]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[16]  F. Pan,et al.  Tunneling anisotropic magnetoresistance driven by magnetic phase transition , 2017, Nature Communications.

[17]  R. Gross,et al.  Spin Hall magnetoresistance induced by a nonequilibrium proximity effect. , 2012, Physical review letters.

[18]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[19]  A. Cheetham,et al.  Magnetic ordering and exchange effects in the antiferromagnetic solid solutionsMnxNi1−xO , 1983 .

[20]  T. Palstra,et al.  Negative spin Hall magnetoresistance of Pt on the bulk easy-plane antiferromagnet NiO , 2017, 1706.03004.

[21]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[22]  H. Ohno,et al.  Spin-orbit torque induced magnetization switching in nano-scale Ta/CoFeB/MgO , 2015 .

[23]  F. Hellman,et al.  Fe spin reorientation across the metamagnetic transition in strained FeRh thin films. , 2012, Physical review letters.

[24]  Caroline A Ross,et al.  Current-induced switching in a magnetic insulator. , 2017, Nature materials.

[25]  J. Wunderlich,et al.  Antiferromagnetic spintronics. , 2015, Nature nanotechnology.

[26]  A. Rushforth,et al.  Electrical switching of an antiferromagnet , 2015, Science.

[27]  Andrew G. Glen,et al.  APPL , 2001 .

[28]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[29]  R. Kubo The Spin-Wave Theory of Antiferromagnetics , 1952 .

[30]  José Carlos Goulart de Siqueira,et al.  Differential Equations , 1919, Nature.

[31]  H. Callen,et al.  The present status of the temperature dependence of magnetocrystalline anisotropy, and the l(l+1)2 power law , 1966 .

[32]  J. Sinova,et al.  Relativistic Néel-order fields induced by electrical current in antiferromagnets. , 2014, Physical review letters.

[33]  F. Pan,et al.  Antiferromagnet-controlled spin current transport in SrMnO 3 / Pt hybrids , 2014 .

[34]  D. Ralph,et al.  Central role of domain wall depinning for perpendicular magnetization switching driven by spin torque from the spin Hall effect , 2013, 1312.7301.

[35]  T. Jungwirth,et al.  Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility , 2017, Nature Communications.

[36]  V. Loktev,et al.  Spin transfer and current-induced switching in antiferromagnets , 2009, 0909.0234.

[37]  T. Yokoyama,et al.  Spin diffusion and magnetoresistance in ferromagnet/topological-insulator junctions , 2013, 1310.3354.

[38]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[39]  E. Saitoh,et al.  Tunable Sign Change of Spin Hall Magnetoresistance in Pt/NiO/YIG Structures. , 2016, Physical review letters.