Printed, sub-3V digital circuits on plastic from aqueous carbon nanotube inks.

Printing electronic components on plastic foils with functional liquid inks is an attractive approach for achieving flexible and low-cost circuitry for applications such as bendable displays and large-area sensors. The challenges for printed electronics, however, include characteristically slow switching frequencies and associated high supply voltages, which together impede widespread application. Combining printable high-capacitance dielectrics with printable high-mobility semiconductors could potentially solve these problems. Here we demonstrate fast, flexible digital circuits based on semiconducting carbon nanotube (CNT) networks and high-capacitance ion gel gate dielectrics, which were patterned by jet printing of liquid inks. Ion gel-gated CNT thin-film transistors (TFTs) with 50 microm channel lengths display ambipolar transport with electron and hole mobilities >20 cm(2)/V.s; these devices form the basis of printed inverters, NAND gates, and ring oscillators on both polyimide and SiO(2) substrates. Five-stage ring oscillators achieve frequencies >2 kHz at supply voltages of 2.5 V, corresponding to stage delay times of 50 micros. This performance represents a substantial improvement for printed circuitry fabricated from functional liquid inks.

[1]  Eugenio Cantatore,et al.  Air‐Stable Complementary‐like Circuits Based on Organic Ambipolar Transistors , 2006 .

[2]  Eugenio Cantatore,et al.  Organic complementary-like inverters employing methanofullerene-based ambipolar field-effect transistors , 2004 .

[3]  Ute Zschieschang,et al.  Low-voltage organic thin-film transistors with large transconductance , 2007 .

[4]  Eric S. Snow,et al.  Random networks of carbon nanotubes as an electronic material , 2003 .

[5]  A. Rinzler,et al.  An Integrated Logic Circuit Assembled on a Single Carbon Nanotube , 2006, Science.

[6]  W. Fix,et al.  From polymer transistors toward printed electronics , 2004 .

[7]  Richard H. Friend,et al.  Lithography‐Free, Self‐Aligned Inkjet Printing with Sub‐Hundred‐Nanometer Resolution , 2005 .

[8]  Jiyoul Lee,et al.  Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. , 2008, Nature materials.

[9]  Phaedon Avouris,et al.  Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays. , 2008, ACS nano.

[10]  Y. Arakawa,et al.  Low-voltage-operating organic complementary circuits based on pentacene and C60 transistors , 2009 .

[11]  Helmut Sitter,et al.  High performance n-channel organic field-effect transistors and ring oscillators based on C60 fullerene films , 2006 .

[12]  Kris Myny,et al.  Pentacene devices and logic gates fabricated by organic vapor phase deposition , 2006 .

[13]  J. Rogers,et al.  Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates , 2008, Nature.

[14]  Tobin J. Marks,et al.  High-mobility bottom-contact n-channel organic transistors and their use in complementary ring oscillators , 2006 .

[15]  M. Berggren,et al.  Printable All‐Organic Electrochromic Active‐Matrix Displays , 2007 .

[16]  M. Fuhrer,et al.  Extraordinary Mobility in Semiconducting Carbon Nanotubes , 2004 .

[17]  H. Kataura,et al.  Ink-Jet Printing of a Single-Walled Carbon Nanotube Thin Film Transistor , 2009 .

[18]  Printed electronics: nanotube inks make their mark. , 2009, Nature nanotechnology.

[19]  Stephen R. Forrest,et al.  The path to ubiquitous and low-cost organic electronic appliances on plastic , 2004, Nature.

[20]  Paul L. McEuen,et al.  Measurement of the quantum capacitance of interacting electrons in carbon nanotubes , 2006 .

[21]  Robert A. Street,et al.  Jet printing flexible displays , 2006 .

[22]  John A Rogers,et al.  Polymer electrolyte gating of carbon nanotube network transistors. , 2005, Nano letters.

[23]  J. Rogers,et al.  High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. , 2007, Nature nanotechnology.

[24]  D. Welsh,et al.  Fast Polymer Integrated Circuits Based on a Polyfluorene Derivative , 2002, 32nd European Solid-State Device Research Conference.

[25]  P. Heremans,et al.  High-Performance Low Voltage Organic Thin-Film Transistors , 2005 .

[26]  Kris Myny,et al.  Organic complementary oscillators with stage-delays below 1 μs , 2010 .

[27]  D. D. de Leeuw,et al.  Poly(diketopyrrolopyrrole-terthiophene) for ambipolar logic and photovoltaics. , 2009, Journal of the American Chemical Society.

[28]  P. Blom,et al.  Integrated complementary-like circuits based on organic ambipolar transistors , 2005 .

[29]  Robert A. Street,et al.  All jet-printed polymer thin-film transistor active-matrix backplanes , 2004 .

[30]  Wim Dehaene,et al.  Plastic circuits and tags for 13.56 MHz radio-frequency communication , 2009 .

[31]  A. Facchetti,et al.  A high-mobility electron-transporting polymer for printed transistors , 2009, Nature.

[32]  Antonio Facchetti,et al.  Solution Processed Top‐Gate n‐Channel Transistors and Complementary Circuits on Plastics Operating in Ambient Conditions , 2008 .

[33]  G. Grüner,et al.  Transparent and flexible carbon nanotube transistors. , 2005, Nano letters.

[34]  Mark C. Hersam,et al.  Sorting carbon nanotubes by electronic structure using density differentiation , 2006, Nature nanotechnology.

[35]  J. Rogers,et al.  Complementary Logic Gates and Ring Oscillators on Plastic Substrates by Use of Printed Ribbons of Single-Crystalline Silicon , 2008, IEEE Electron Device Letters.

[36]  Wolfgang Clemens,et al.  Fully printed integrated circuits from solution processable polymers , 2004 .

[37]  Takao Someya,et al.  Flexible Low‐Voltage Organic Transistors and Circuits Based on a High‐Mobility Organic Semiconductor with Good Air Stability , 2010, Advanced materials.

[38]  Magnus Berggren,et al.  Low‐Voltage Ring Oscillators Based on Polyelectrolyte‐Gated Polymer Thin‐Film Transistors , 2010, Advanced materials.

[39]  N D Robinson,et al.  Organic materials for printed electronics. , 2007, Nature materials.

[40]  Chen-Pang Kung,et al.  Polymer Inverter Fabricated by Inkjet Printing and Realized by Transistors Arrays on Flexible Substrates , 2009, Journal of Display Technology.

[41]  Richard H. Friend,et al.  High-Resolution Ink-Jet Printing of All-Polymer Transistor Circuits , 2001 .

[42]  Paul L. McEuen,et al.  High Performance Electrolyte Gated Carbon Nanotube Transistors , 2002 .

[43]  S. Bauer,et al.  Organic Nonvolatile Memory Transistors for Flexible Sensor Arrays , 2009, Science.

[44]  U. Zschieschang,et al.  Flexible organic complementary circuits , 2005, IEEE Transactions on Electron Devices.

[45]  Sung Kyu Park,et al.  Polymeric Substrate Spin-Cast diF-TESADT OTFT Circuits , 2008, IEEE Electron Device Letters.

[46]  Jaeyoung Kim,et al.  All-Printed and Roll-to-Roll-Printable 13.56-MHz-Operated 1-bit RF Tag on Plastic Foils , 2010, IEEE Transactions on Electron Devices.

[47]  H. Sirringhaus,et al.  High-Resolution Ink-Jet Printing of All-Polymer Transistor Circuits , 2000, Science.

[48]  Wei Zhang,et al.  Printed Sub‐2 V Gel‐Electrolyte‐Gated Polymer Transistors and Circuits , 2010 .

[49]  H. Klauk,et al.  Ultralow-power organic complementary circuits , 2007, Nature.

[50]  Un Jeong Kim,et al.  Adaptive logic circuits with doping-free ambipolar carbon nanotube transistors. , 2009, Nano letters.

[51]  Chongwu Zhou,et al.  Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. , 2009, Nano letters.

[52]  Moonsub Shim,et al.  Highly Efficient Gating and Doping of Carbon Nanotubes with Polymer Electrolytes , 2004 .

[53]  A. Sokolov,et al.  Self-sorted nanotube networks on polymer dielectrics for low-voltage thin-film transistors. , 2009, Nano letters.

[54]  John E. Anthony,et al.  High-performance organic integrated circuits based on solution processable polymer-small molecule blends , 2008 .

[55]  Wim Dehaene,et al.  Organic RFID transponder chip with data rate compatible with electronic product coding , 2010 .

[56]  E. van Veenendaal,et al.  Solution-processed ambipolar organic field-effect transistors and inverters , 2003, Nature materials.

[57]  Elsa Reichmanis,et al.  Ring oscillator fabricated completely by means of mass-printing technologies , 2007 .