Scene-based wavefront correction with spatial light modulators

Spatial light modulators (SLM) are used in different microscopy setups. Examples are optical tweezers, programmable phase contrast imaging, confocal imaging, and aberration correction. We report on a method that measures and corrects specimen-induced aberrations in wide-field microscopy without additional optical components (e.g. Shack-Hartmann sensors) by taking advantage of the SLM that is already used in the setup. Different local gratings are written into the SLM which is positioned in a plane conjugate to the pupil of the imaging system. Multiple images are recorded and based on the shift of subimages we deduce the wavefront. We demonstrate first experimental results of this method for a system using a high resolution LCoS modulator.

[1]  O. von der Luhe Wavefront Error Measurement Technique Using Extended, Incoherent Light Sources , 1988 .

[2]  Amanda J Wright,et al.  Dynamic closed-loop system for focus tracking using a spatial light modulator and a deformable membrane mirror. , 2006, Optics express.

[3]  Lisa A Poyneer,et al.  Scene-based Shack-Hartmann wave-front sensing: analysis and simulation. , 2003, Applied optics.

[4]  Peter Varga,et al.  The role of specimen‐induced spherical aberration in confocal microscopy , 1997 .

[5]  G. Vdovin,et al.  Comparison study of the performance of piston, thin plate and membrane mirrors for correction of turbulence-induced phase distortions , 2001 .

[6]  Michel Tallon,et al.  Phase retrieval from speckle images. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[7]  Hans J. Tiziani,et al.  The adaptive Shack-Hartmann sensor , 2003 .

[8]  J. Conchello,et al.  Three-dimensional imaging by deconvolution microscopy. , 1999, Methods.

[9]  T. Wilson,et al.  Characterizing specimen induced aberrations for high NA adaptive optical microscopy. , 2004, Optics express.

[10]  L. Schaefer,et al.  Generalized approach for accelerated maximum likelihood based image restoration applied to three‐dimensional fluorescence microscopy , 2001, Journal of microscopy.

[11]  Wolfgang Osten,et al.  Dynamic correction of aberrations in microscopic imaging systems using an artificial point source , 2004, SPIE Photonics Europe.

[12]  Simone Esposito,et al.  Adaptive optics for ophthalmic applications using a pyramid wavefront sensor. , 2006, Optics express.

[13]  T Wilson,et al.  Simple optimization procedure for objective lens correction collar setting , 2005, Journal of microscopy.

[14]  M Gu,et al.  Aberration compensation in confocal microscopy. , 1991, Applied optics.

[15]  G. Love,et al.  Wave front control systems based on modal liquid crystal lenses , 2000 .

[16]  T. Wilson,et al.  Aberration correction for confocal imaging in refractive‐index‐mismatched media , 1998 .

[17]  S. Ridgway Adaptive Optics , 2022 .

[18]  Kotska Wallace,et al.  Tests on micromirror arrays for adaptive optics , 2004, SPIE Optics + Photonics.

[19]  Vicente Durán,et al.  Measurement and compensation of optical aberrations using a single spatial light modulator. , 2007, Optics express.

[20]  Gleb Vdovin,et al.  Hartmann-Shack test with random masks for modal wavefront reconstruction. , 2005, Optics express.

[21]  J. C. Dainty,et al.  A low cost adaptive optics system using a membrane mirror. , 2000, Optics express.

[22]  O. Albert,et al.  Adaptive correction of depth‐induced aberrations in multiphoton scanning microscopy using a deformable mirror , 2002, Journal of microscopy.

[23]  C Paterson,et al.  Hybrid curvature and gradient wave-front sensor. , 2000, Optics letters.

[24]  Christoph U. Keller,et al.  Low-cost solar adaptive optics in the infrared , 2003, SPIE Astronomical Telescopes + Instrumentation.

[25]  M. Teague,et al.  Image formation in terms of the transport equation , 1984 .

[26]  Robert K. Tyson Principles of Adaptive Optics , 1991 .

[27]  B. Macintosh,et al.  Spatially filtered wave-front sensor for high-order adaptive optics. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[28]  Wolfgang Osten,et al.  Fast hologram computation and aberration control for holographic tweezers , 2005, SPIE Optics + Photonics.

[29]  John W Sedat,et al.  Modelling the application of adaptive optics to wide‐field microscope live imaging , 2007, Journal of microscopy.

[30]  Wilson,et al.  New modal wave-front sensor: a theoretical analysis , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[31]  D. Agard,et al.  Computational adaptive optics for live three-dimensional biological imaging , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[32]  J. Swedlow,et al.  A workingperson's guide to deconvolution in light microscopy. , 2001, BioTechniques.

[33]  Harvey F. Silverman,et al.  A Class of Algorithms for Fast Digital Image Registration , 1972, IEEE Transactions on Computers.

[34]  T Wilson,et al.  Closed-loop aberration correction by use of a modal Zernike wave-front sensor. , 2000, Optics letters.

[35]  Eugenie Dalimier,et al.  Comparative analysis of deformable mirrors for ocular adaptive optics. , 2005, Optics express.

[36]  M. Booth Wavefront sensorless adaptive optics for large aberrations. , 2007, Optics letters.

[37]  William Marquette,et al.  Solar adaptive optics: a progress report , 2003, SPIE Astronomical Telescopes + Instrumentation.

[38]  J. Girkin,et al.  Practical implementation of adaptive optics in multiphoton microscopy. , 2003, Optics express.

[39]  Buse,et al.  3D imaging: wave front sensing utilizing a birefringent crystal , 2000, Physical review letters.

[40]  M. Booth Adaptive optics in microscopy. , 2003, Philosophical transactions. Series A, Mathematical, physical, and engineering sciences.

[41]  J. Murray,et al.  A common aberration with water‐immersion objective lenses , 2004, Journal of microscopy.

[42]  Hans J. Tiziani,et al.  Determination and compensation of aberrations using SLMs , 2004 .