Modeling of proton-induced radioactivation background in hard X-ray telescopes: Geant4-based simulation and its demonstration by Hitomi’s measurement in a low Earth orbit

Abstract Hard X-ray astronomical observatories in orbit suffer from a significant amount of background due to radioactivation induced by cosmic-ray protons and/or geomagnetically trapped protons. Within the framework of a full Monte Carlo simulation, we present modeling of in-orbit instrumental background which is dominated by radioactivation. To reduce the computation time required by straightforward simulations of delayed emissions from activated isotopes, we insert a semi-analytical calculation that converts production probabilities of radioactive isotopes by interaction of the primary protons into decay rates at measurement time of all secondary isotopes. Therefore, our simulation method is separated into three steps: (1) simulation of isotope production, (2) semi-analytical conversion to decay rates, and (3) simulation of decays of the isotopes at measurement time. This method is verified by a simple setup that has a CdTe semiconductor detector, and shows a 100-fold improvement in efficiency over the straightforward simulation. To demonstrate its experimental performance, the simulation framework was tested against data measured with a CdTe sensor in the Hard X-ray Imager onboard the Hitomi X-ray Astronomy Satellite, which was put into a low Earth orbit with an altitude of 570 km and an inclination of 31 ° , and thus experienced a large amount of irradiation from geomagnetically trapped protons during its passages through the South Atlantic Anomaly. The simulation is able to treat full histories of the proton irradiation and multiple measurement windows. The simulation results agree very well with the measured data, showing that the measured background is well described by the combination of proton-induced radioactivation of the CdTe detector itself and thick Bi 4 Ge 3 O 12 scintillator shields, leakage of cosmic X-ray background and albedo gamma-ray radiation, and emissions from naturally contaminated isotopes in the detector system.

Yasushi Fukazawa | Motohide Kokubun | Kazutaka Yamaoka | Olivier Limousin | Teruaki Enoto | Hirofumi Noda | Daniel Maier | Katsuhiro Hayashi | Hirokazu Odaka | Goro Sato | Yasuyuki Tanaka | Hideki Uchiyama | Shin Watanabe | Yoichi Yatsu | Philippe Laurent | Kunishiro Mori | Shin'ichiro Takeda | Andreas Zoglauer | Toshio Nakano | Junichiro Katsuta | Taketo Mimura | Katsuma Miyake | Masanori Ohno | Rie Sato | Madoka Kawaharada | Makoto Asai | Tsunefumi Mizuno | Tatsumi Koi | Masanobu Ozaki | Yukikatsu Terada | Takayuki Yuasa | Shogo B. Kobayashi | Yasuyuki T. Tanaka | Jun Kataoka | Dennis H. Wright | Francois Lebrun | Hiroyasu Tajima | Kazuo Makishima | Takeshi Nakamori | Kazuhiro Nakazawa | Hiromitsu Takahashi | Kouichi Hagino | Masayuki Ohta | Tadayuki Takahashi | Yasunobu Uchiyama | M. Asai | D. Wright | T. Koi | R. Sato | K. Makishima | M. Kawaharada | K. Hayashi | K. Yamaoka | Y. Yatsu | Y. Fukazawa | T. Mizuno | Shin Watanabe | K. Nakazawa | J. Kataoka | T. Enoto | K. Hagino | J. Katsuta | M. Kokubun | P. Laurent | F. Lebrun | O. Limousin | D. Maier | T. Nakamori | T. Nakano | H. Noda | H. Odaka | M. Ohno | M. Ozaki | S. Saito | G. Sato | H. Tajima | Hiromitsu Takahashi | Tadayuki Takahashi | S. Takeda | Takaaki Tanaka | Y. Terada | H. Uchiyama | Y. Uchiyama | G. Madejski | A. Zoglauer | T. Mimura | Katsuma Miyake | Hiroaki Murakami | Tamotsu Satō | T. Yuasa | Greg Madejski | Hiroaki Murakami | Shinya Saito | Takaaki Tanaka | K. Mori | Tamotsu Sato | M. Ohta | T. Yasuda | Tetsuya Yasuda | S. Watanabe | Y. Tanaka | S. Kobayashi | H. Takahashi | Tamotsu Sato | H. Murakami

[1]  A. Dell'Acqua,et al.  Geant4 - A simulation toolkit , 2003 .

[2]  T. Koi,et al.  Geant 4 Developments and Applications , 2013 .

[3]  J. Chiang,et al.  The Bayesian Block Algorithm , 2013, 1304.2818.

[4]  T. Takahashi,et al.  Monte Carlo simulation study of in-orbit background for the soft gamma-ray detector on-board ASTRO-H , 2010, Astronomical Telescopes + Instrumentation.

[5]  Motohide Kokubun,et al.  The hard x-ray imager (HXI) onboard ASTRO-H , 2016, Astronomical Telescopes + Instrumentation.

[6]  Kristin K. Madsen,et al.  NuSTAR OBSERVATIONS OF THE BULLET CLUSTER: CONSTRAINTS ON INVERSE COMPTON EMISSION , 2014, 1403.2722.

[7]  D. Caruge,et al.  Recent Developments in Geant4 , 2014, ICS 2014.

[8]  Shogo B. Kobayashi,et al.  The Si/CdTe semiconductor camera of the ASTRO-H Hard X-ray Imager (HXI) , 2016 .

[9]  B. L. Colborn,et al.  Trapped Radiation Model Uncertainties: Model-Data and Model-Model Comparisons , 2000 .

[10]  T. Tanaka,et al.  In-Orbit Performance of the Hard X-Ray Detector on Board Suzaku , 2006, astro-ph/0611233.

[11]  Yoshiharu Namba,et al.  The ASTRO-H (Hitomi) x-ray astronomy satellite , 2016, Astronomical Telescopes + Instrumentation.

[12]  Tadayuki Takahashi,et al.  In-orbit performance and calibration of the Hard X-ray Imager onboard Hitomi (ASTRO-H) , 2018, 1805.08344.

[13]  M. Casolino,et al.  Geomagnetically trapped, albedo and solar energetic particles: Trajectory analysis and flux reconstruction with PAMELA , 2016, 1607.02870.

[14]  Logan J. Harr Precise Calculation of Complex Radioactive Decay Chains , 2007 .

[15]  S. Incerti,et al.  Geant4 developments and applications , 2006, IEEE Transactions on Nuclear Science.

[16]  G. Sato,et al.  Activation properties of Schottky CdTe diodes irradiated by 150 MeV protons , 2002, 2002 IEEE Nuclear Science Symposium Conference Record.

[17]  G. Weidenspointner,et al.  MGGPOD: a Monte Carlo Suite for Modeling Instrumental Line and Continuum Backgrounds in Gamma-Ray Astronomy , 2004, astro-ph/0408399.

[18]  Robert Andritschke,et al.  MEGAlib – The Medium Energy Gamma-ray Astronomy Library , 2006 .

[19]  J. Scargle Studies in Astronomical Time-series Analysis. VII. An Enquiry Concerning Nonlinearity, the rms–Mean Flux Relation, and Lognormal Flux Distributions , 2020, The Astrophysical Journal.

[20]  Kentaro Uesugi,et al.  Imaging and spectral performance of CdTe double-sided strip detectors for the hard x-ray imager onboard ASTRO-H , 2012, Other Conferences.

[21]  Dieter Bilitza,et al.  NASA/National Space Science Data Center trapped radiation models , 1994 .

[22]  Tadayuki Takahashi,et al.  Design and performance of Soft Gamma-ray Detector onboard the Hitomi (ASTRO-H) satellite , 2018 .

[23]  Yasushi Fukazawa,et al.  Development of an integrated response generator for Si/CdTe semiconductor Compton cameras , 2010 .

[24]  Tadayuki Takahashi,et al.  The soft gamma-ray detector (SGD) onboard ASTRO-H , 2016, Astronomical Telescopes + Instrumentation.

[25]  Tuneyoshi Kamae,et al.  Hard X-Ray Detector (HXD) on Board Suzaku , 2006, astro-ph/0611232.

[26]  Akihiro Furuzawa,et al.  A Monte Carlo simulation framework to study ASTRO-H in-orbit radiation and detector responses based on Geant4 toolkit , 2012, Other Conferences.

[27]  A. V. Karelin,et al.  TRAPPED PROTON FLUXES AT LOW EARTH ORBITS MEASURED BY THE PAMELA EXPERIMENT , 2014, 1412.1258.

[28]  J. Chiang,et al.  STUDIES IN ASTRONOMICAL TIME SERIES ANALYSIS. VI. BAYESIAN BLOCK REPRESENTATIONS , 2012, 1207.5578.