Continuity

We now come to the difficult question, What is continuity? Kant confounds it with infinite divisibility, saying that the essential character of a continuous series is that between any two members of it a third can always be found. This is an analysis beautifully clear and definite; but, unfortunately, it breaks down under the first test. For according to this, the entire series of rational fractions arranged in the order of their magnitude would be an infinite series, although the rational fractions are numerable, while the points of a line are innumerable. Nay, worse yet, if from that series of fractions any two with all that lie between them be excised, and any number of such finite gaps be made, Kant’s definition is still true of the series, though it has lost all appearance of continuity.