Data driven development of predictive ecological models for benthic macroinvertebrates in rivers

[1]  Peter Goethals,et al.  Development of a monitoring network to assess the impact of banana farming on the Chaguana river in Ecuador , 2004 .

[2]  F Baca,et al.  Time of planting and choice of maize hybrids in controlling WCR (Diabrotica virgifera virgifera Le Conte) in Serbia and Montenegro. , 2003, Communications in agricultural and applied biological sciences.

[3]  A. Melloul,et al.  Harmonizing water management and social needs: a necessary condition for sustainable development. The case of Israel's coastal aquifer. , 2003, Journal of environmental management.

[4]  Uygar Özesmi,et al.  An artificial neural network approach to spatial habitat modelling with interspecific interaction , 1999 .

[5]  M. Kuussaari,et al.  Use of belief network modelling to assess the impact of buffer zones on water protection and biodiversity , 2003 .

[6]  Y. Uzunov,et al.  BULGARIAN BIOTIC INDEX (BGBI): AN EXPRESS METHOD FOR BIOASSESSMENT OF THE QUALITY OF RUNNING WATERS , 1998 .

[7]  Niels De Pauw,et al.  Biotic index for sediment quality assessment of watercourses in Flanders, Belgium , 2001, Aquatic Ecology.

[8]  P. Legendre,et al.  Developments in Numerical Ecology , 1988 .

[9]  Young-Seuk Park,et al.  Predicting the species richness of aquatic insects in streams using a limited number of environmental variables , 2003, Journal of the North American Benthological Society.

[10]  Peter Goethals,et al.  Optimisation of Artificial Neural Network (ANN) model design for prediction of macroinvertebrate communities in the Zwalm river basin (Flanders, Belgium) , 2002 .

[11]  N De Pauw,et al.  Application of genetic algorithms for input variables selection of decision tree models predicting Mollusca in unnavigable Flemish watercourses. , 2001, Mededelingen.

[12]  Peter Goethals,et al.  Ecological informatics applied to decision support in river management : case studies for education purposes , 2001 .

[13]  Peter Goethals,et al.  Development of decision support techniques for monitoring, assessment and management of rivers in Ethiopia , 2004 .

[14]  William M Beck,et al.  Studies in stream pollution biology. I. A simplified ecological classification of organisms , 1954 .

[15]  Jaimie T A Dick,et al.  The validity of the Gammarus:Asellus ratio as an index of organic pollution: abiotic and biotic influences. , 2002, Water research.

[16]  Friedrich Recknagel,et al.  Applications of machine learning to ecological modelling , 2001 .

[17]  N De Pauw,et al.  River restoration simulations by ecosystem models predicting aquatic macroinvertebrate communities based on J48 classification trees. , 2001, Mededelingen.

[18]  Steven Walczak Developing Neural Nets for Currency Trading , 1995 .

[19]  Sovan Lek,et al.  Stochastic models that predict trout population density or biomass on a mesohabitat scale , 1996, Hydrobiologia.

[20]  Peter Goethals,et al.  DEVELOPMENT OF A CONCEPT FOR INTEGRATED ECOLOGICAL RIVER ASSESSMENT IN FLANDERS, BELGIUM , 2001 .

[21]  Peter A. Vanrolleghem,et al.  Monitoring and modelling of free water surface constructed wetlands , 1999 .

[22]  Niels De Pauw,et al.  Optimisation of the Monitoring Strategy of Macroinvertebrate Communities in the River Dender, in Relation to the EU Water Framework Directive , 2002, TheScientificWorldJournal.

[23]  Joseph Wang,et al.  On-line electrochemical monitoring of (TNT) 2,4,6-trinitrotoluene in natural waters , 2003 .

[24]  D. van der Molen The role of eutrophication models in water management , 1999 .

[25]  Jan H. Janse A model of nutrient dynamics in shallow lakes in relation to multiple stable states , 1997 .

[26]  Nick Hanley,et al.  Aggregating the benefits of environmental improvements: distance-decay functions for use and non-use values. , 2003, Journal of environmental management.

[27]  Young-Seuk Park,et al.  Implementation of artificial neural networks in patterning and prediction of exergy in response to temporal dynamics of benthic macroinvertebrate communities in streams , 2001 .

[28]  Sovan Lek,et al.  Improved estimation, using neural networks, of the food consumption of fish populations , 1995 .

[29]  F. Toran,et al.  Design of a virtual instrument for water quality monitoring across the Internet , 2001 .

[30]  M. R. Chambers A comparison of the population ecology of Asellus aquaticus (L.) and Asellus meridianus rac. in the reed beds of the Tjeukemeer , 1977, Hydrobiologia.

[31]  Claude Amoros,et al.  Restoration ecology of riverine wetlands: I. A scientific base , 1995 .

[32]  David Pearce,et al.  Valuing biological diversity: issues and overview , 2001 .

[33]  Herbert E. Allen,et al.  Assessing potential bioavailability of metals in sediments: A proposed approach , 1994 .

[34]  J. Karr Assessment of Biotic Integrity Using Fish Communities , 1981 .

[35]  E. M. Haas,et al.  Persistence of benthic invertebrates in polluted sediments. , 2004 .

[36]  R. Gregory,et al.  Ten common mistakes in designing biodiversity indicators for forest policy. , 2003, Journal of environmental management.

[37]  Guido Persoone,et al.  Systems of Biological Indicators for Water Quality Assessment , 1979 .

[38]  J. Wilhm,et al.  Species Diversity of Benthic Macroinvertebrates in a Stream Receiving Domestic and Oil Refinery Effluents , 1966 .

[39]  N. De Pauw,et al.  Performance of two artificial substrate samplers for macroinvertebrates in biological monitoring of large and deep rivers and canals in Belgium and The Netherlands , 1994, Environmental monitoring and assessment.

[40]  Peter Goethals,et al.  Development of a biological water quality assessment system for the Sumberjaya watershed in West-Lampung, Sumatra (Indonesia) , 2004 .

[41]  R. E. Richardson,et al.  The Bottom Fauna of the Middle Illinois River, 1913-1925: Its Distribution, Abundance, Valuation, and Index Value in the Study of Stream Pollution , 1928 .

[42]  N De Pauw,et al.  Development of river ecosystem models for Flemish watercourses: case studies in the Zwalm river basin. , 2001, Mededelingen.

[43]  Michael Obach,et al.  Modelling population dynamics of aquatic insects with artificial neural networks , 2001 .

[44]  Saso Dzeroski,et al.  Predicting Chemical Parameters of River Water Quality from Bioindicator Data , 2000, Applied Intelligence.

[45]  Se-Hak Chun,et al.  Data mining for financial prediction and trading: application to single and multiple markets , 2004, Expert Syst. Appl..

[46]  Kadir Liano,et al.  Robust error measure for supervised neural network learning with outliers , 1996, IEEE Trans. Neural Networks.

[47]  Mark E. Borsuk,et al.  A Bayesian network for investigating the decline in fish catch in Switzerland , 2002 .

[48]  Gregory R. Madey,et al.  The Application of Neural Networks and a Qualitative Response Model to the Auditor's Going Concern Uncertainty Decision* , 1995 .

[49]  U. Borgmann,et al.  Assessing the cause of impacts on benthic organisms near Rouyn-Noranda, Quebec. , 2004, Environmental pollution.

[50]  M. T. Furse,et al.  The performance of a new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running-water sites , 1983 .

[51]  H. Casey,et al.  The LOIS river monitoring network: strategy and implementation , 1997 .

[52]  Ian J. Bateman,et al.  Ecological Economics and Coastal Zone Ecosystems’ Values: An Overview , 2001 .

[53]  K. Bernhauer,et al.  Handbuch der Frischwasser‐ und Abwasserbiologie (Biologie des Trinkwassers, Badewassers, Fischwassers, Vorfluters und Abwassers), von H. Liebmann, Bd. 1. Verlag R. Oldenbourg, München 1951. 539 S., 436 Abb., 5 Farb‐ u. 13 Schwarzweißtafeln, Olwd. DM 54.– , 1951 .

[54]  L. A. Du Preez,et al.  Establishing a network of on-line monitors at the purification works and in the distribution network of rand water , 1998 .

[55]  P. Verdonschot,et al.  Towards a decision support system for stream restoration in the Netherlands: an overview of restoration projects and future needs , 2002, Hydrobiologia.

[56]  Pier Francesco Ghetti,et al.  Indice Biotico Esteso (E.B.I.). I macroinvertebrati nel controllo della qualità degli ambienti di acque correnti. Manuale di Applicazione. , 1997 .

[57]  Timothy Masters,et al.  Practical neural network recipes in C , 1993 .

[58]  H. B. N. Hynes,et al.  Upstream Movements of the Benthic Invertebrates in the Speed River, Ontario , 1969 .

[59]  M. Babut,et al.  Developing environmental quality standards for various pesticides and priority pollutants for French freshwaters. , 2003, Journal of environmental management.

[60]  Adam Fenech,et al.  A New Market Instrument for Sustainable Economic and Environmental Development , 2003, Environmental monitoring and assessment.

[61]  Alfred F. Bartsch,et al.  Biological Analysis of Water Pollution in North America , 1966 .

[62]  Steven Walczak,et al.  Heuristic principles for the design of artificial neural networks , 1999, Inf. Softw. Technol..

[63]  G. Sigua,et al.  Watershed scale assessment of nitrogen and phosphorus loadings in the Indian River Lagoon basin, Florida. , 2003, Journal of environmental management.

[64]  Sovan Lek,et al.  Energy availability and habitat heterogeneity predict global riverine fish diversity , 1998, Nature.

[65]  Colin MacBeth,et al.  Effects of Learning Parameters on Learning Procedure and Performance of a BPNN , 1997, Neural Networks.

[66]  Robert C. Bailey,et al.  Temporal variability of stream bioassessments using benthic macroinvertebrates , 1999 .

[67]  J. M. Hellawell Biological indicators of freshwater pollution and environmental management , 1986 .

[68]  Mike T. Furse,et al.  Using RIVPACS as a modelling tool to predict the impacts of environmental changes. , 2000 .

[69]  I. Kanellopoulos,et al.  Strategies and best practice for neural network image classification , 1997 .

[70]  Pier Francesco Ghetti,et al.  European perspective on biological monitoring , 1994 .

[71]  S. Lek,et al.  The use of artificial neural networks to predict the presence of small‐bodied fish in a river , 1997 .

[72]  D. Borchardt,et al.  Bioindication of chemical and hydromorphological habitat characteristics with benthic macro-invertebrates based on Artificial Neural Networks , 2001, Aquatic Ecology.

[73]  Robert E Manning,et al.  Proactive monitoring and adaptive management of social carrying capacity in Arches National Park: an application of computer simulation modeling. , 2003, Journal of environmental management.

[74]  S. Manel,et al.  Alternative methods for predicting species distribution: an illustration with Himalayan river birds , 1999 .

[75]  W. J. Walley,et al.  A Prototype Bayesian Belief Network For TheDiagnosis Of Acidification In Welsh Rivers , 2000 .

[76]  Desmond Fletcher,et al.  Forecasting with neural networks: An application using bankruptcy data , 1993, Inf. Manag..

[77]  Tommy Olsson,et al.  Springtime migration and growth of Parameletus chelifer (Ephemeroptera) in a temporary stream in northern Sweden , 1978 .

[78]  Barry T Hart,et al.  Assessment of the biological health of the Brantas River, East Java, Indonesia using the Australian River Assessment System (AUSRIVAS) methodology , 2001, Aquatic Ecology.

[79]  Antoine Guisan,et al.  Predictive habitat distribution models in ecology , 2000 .

[80]  Michael J Bradford,et al.  Valuing freshwater salmon habitat on the west coast of Canada. , 2003, Journal of environmental management.

[81]  A. T. C. Goh,et al.  Back-propagation neural networks for modeling complex systems , 1995, Artif. Intell. Eng..

[82]  Mitchell J. Small,et al.  Bayesian Environmental Policy Decisions: Two Case Studies , 1996 .

[83]  Raja R. Sengupta,et al.  A spatial decision support system to identify species-specific critical habitats based on size and accessibility using US GAP data , 2004, Environ. Model. Softw..

[84]  S. Lek,et al.  The use of artificial neural networks to assess fish abundance and spatial occupancy in the littoral zone of a mesotrophic lake , 1999 .

[85]  P. Goethals,et al.  Use of genetic algorithms to select input variables in decision tree models for the prediction of benthic macroinvertebrates , 2003 .

[86]  A. Salski,et al.  A fuzzy knowledge-based model of annual production of skylarks , 1996 .

[87]  Michael Y. Hu,et al.  Two-Group Classification Using Neural Networks* , 1993 .

[88]  Willy Verstraete,et al.  A model for the beneficial effects of Nutrifloc 50 S on the settlement of activated sludge , 1996 .

[89]  N De Pauw,et al.  Development of short and long-term management options for bergelenput to avoid fish kills caused by algal blooms. , 2001, Mededelingen.

[90]  N De Pauw,et al.  Predicting Gammaridae (Crustaceae, Isopoda) in the Zwalm river basin (Flanders, Belgium) by means of fuzzy logic models. , 2001, Mededelingen.

[91]  Sven Erik Jørgensen,et al.  State-of-the-art of ecological modelling with emphasis on development of structural dynamic models , 1999 .

[92]  Ingrid M. Schleiter,et al.  Modelling water quality, bioindication and population dynamics in lotic ecosystems using neural networks , 1999 .

[93]  Vladimír Sládeček,et al.  The reality of three British biotic indices , 1973 .

[94]  Peter A. Vanrolleghem,et al.  Water quality models and indexes as bridges in integrated ecological monitoring, assessment and management of running waters in Flanders , 2000 .

[95]  Peter A. Vanrolleghem,et al.  Experience and organisation of automated measuring stations for river water quality monitoring , 2000 .

[96]  Sovan Lek,et al.  Predicting fish yield of african lakes using neural networks , 1999 .

[97]  Lesley A. Warren,et al.  Modelling cadmium accumulation by benthic invertebrates in situ: The relative contributions of sediment and overlying water reservoirs to organism cadmium concentrations , 1998 .

[98]  P. Verdonschot,et al.  Ecological characterization of surface waters in the province of Overijssel, The Netherlands , 1990 .

[99]  Peter Goethals,et al.  Optimization of Artificial Neural Network (ANN) model design for prediction of macroinvertebrates in the Zwalm river basin (Flanders, Belgium) , 2004 .

[100]  David Pullar,et al.  Towards integrating GIS and catchment models , 2000, Environ. Model. Softw..

[101]  Sovan Lek,et al.  Abundance, diversity, and structure of freshwater invertebrates and fish communities: An artificial neural network approach , 2001 .

[102]  George W. Kling,et al.  Stable Isotopes Resolve the Drift Paradox for Baetis Mayflies in an Arctic River , 1993 .

[103]  Henry O. Edwards,et al.  An instrument for the measurement of colour and turbidity in natural waters , 1998 .

[104]  Peter Goethals,et al.  Modelling of river ecosystems based on the use of artificial neural networks. , 2000 .

[105]  H. H. Tolkamp,et al.  Organism-substrate relationships in lowland streams , 1981 .

[106]  R.A.E. Knoben,et al.  Working Programme 1994/1995: Volume 3: Biological assessment methods for watercourses , 1995 .

[107]  O. Beauchard,et al.  Macroinvertebrate richness patterns in North African streams , 2003 .

[108]  Ian Flood,et al.  Neural Networks in Civil Engineering. I: Principles and Understanding , 1994 .

[109]  M. L. van der Veen,et al.  Environmental management accounting , 2000 .

[110]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[111]  Peter Goethals,et al.  Reflections On The Feasibility and Implications of The Eu Water Framework Directive , 2002 .

[112]  Jan H. Janse,et al.  Integrated modelling for nutrient loading and ecology of lakes in The Netherlands , 2004 .

[113]  Ann van Griensven,et al.  Automated measurement stations for river water quality monitoring , 1999 .

[114]  John Bell,et al.  A review of methods for the assessment of prediction errors in conservation presence/absence models , 1997, Environmental Conservation.

[115]  I. Dimopoulos,et al.  Neural network models to study relationships between lead concentration in grasses and permanent urban descriptors in Athens city (Greece) , 1999 .

[116]  Peter Baumann,et al.  Requirements with respect to on-line analyzers for N and P , 1996 .

[117]  Michio Sugeno,et al.  Applied fuzzy systems , 1994 .

[118]  Niels De Pauw,et al.  Method for biological quality assessment of watercourses in Belgium , 2004, Hydrobiologia.

[119]  Peter Goethals,et al.  Genetic algorithms for optimisation of predictive ecosystems models based on decision trees and neural networks , 2006 .

[120]  Robert H. Whittaker,et al.  A Study of Summer Foliage Insect Communities in the Great Smoky Mountains , 1952 .

[121]  D. Sutcliffe,et al.  A revised key to the British species of Crustacea: Malacostraca, occurring in fresh water : with notes on their ecology and distribution , 1976 .

[122]  I. Dimopoulos,et al.  Application of neural networks to modelling nonlinear relationships in ecology , 1996 .

[123]  Albert Y. Zomaya,et al.  Toward generating neural network structures for function approximation , 1994, Neural Networks.

[124]  Peter Goethals,et al.  Monitoring of macroinvertebrate communities for the ecological evaluation of valuable upstream brooks in Flanders, Belgium. , 2002 .

[125]  Ralph Mac Nally,et al.  Validation Tests of Predictive Models of Butterfly Occurrence Based on Environmental Variables , 2003 .

[126]  Willy Verstraete,et al.  Effect of reactive oxygen intermediates on microbial cell and communities: a model for the beneficial effect of Nutrifloc 50 S on activated sludge , 1997 .

[127]  Mark Ridgley,et al.  A Fuzzy Logic Model to Predict Coral Reef Development under Nutrient and Sediment Stress , 1998 .

[128]  Peter Goethals,et al.  Watershed-fed aquaculture in the South of Vietnam , 2004 .

[129]  Andrea Emilio Rizzoli,et al.  A framework for modelling multiple resource management issues - an open modelling approach , 1999, Environ. Model. Softw..

[130]  W. Norwood,et al.  Relationship between chronic toxicity and bioaccumulation of cadmium in Hyalella azteca , 1991 .

[131]  Veronique Adriaenssens,et al.  Application of Bayesian Belief Networks for the prediction of macroinvertebrate taxa in rivers , 2004 .

[132]  Leonard Sandin,et al.  Overview and application of the AQEM assessment system , 2004, Hydrobiologia.

[133]  S. Soyupak,et al.  Case studies on the use of neural networks in eutrophication modeling , 2000 .

[134]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[135]  Simon Dietz,et al.  Economic growth, biodiversity loss and conservation effort. , 2003, Journal of environmental management.

[136]  M. B. Beck,et al.  An Environmental Process Control Laboratory: At the interface between instrumentation and model development , 1998 .

[137]  Joachim Illies,et al.  Versuch einer allgemeinen biozönotischen Gliederung der Fließgewässer , 1961 .

[138]  W. Bauwens,et al.  Application of Automated Measurement Stations for Continuous Water Quality Monitoring of the Dender River in Flanders, Belgium , 2005, Environmental monitoring and assessment.

[139]  Marten Scheffer Multiplicity of stable states in freshwater systems , 1990 .

[140]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[141]  Robert M. Argent,et al.  Design of information systems for environmental managers: an example using interface prototyping , 2001, Environ. Model. Softw..

[142]  Mike T. Furse,et al.  The multimetric approach to bioassessment, as used in the United States of America. , 2000 .

[143]  Steven Mackinson,et al.  An adaptive fuzzy expert system for predicting structure, dynamics and distribution of herring shoals , 2000 .

[144]  Veronique Adriaenssens Knowledge-based macroinvertebrate habitat suitability models for use in ecological river management , 2004 .

[145]  P A Vanrolleghem,et al.  On-line monitoring equipment for wastewater treatment processes: state of the art. , 2003, Water science and technology : a journal of the International Association on Water Pollution Research.

[146]  Tiange Shi,et al.  Ecological economics as a policy science: rhetoric or commitment towards an improved decision-making process on sustainability , 2004 .

[147]  Thomas F. Waters,et al.  Interpretation of Invertebrate Drift in Streams , 1965 .

[148]  Friedrich Recknagel,et al.  Predictive modelling of macroinvertebrate assemblages for stream habitat assessments in Queensland (Australia) , 2001 .

[149]  Christian K. Feld,et al.  A New Method for Assessing the Impact of Hydromorphological Degradation on the Macroinvertebrate Fauna of Five German Stream Types , 2004 .

[150]  Sašo Džeroski,et al.  Using regression trees to identify the habitat preference of the sea cucumber (Holothuria leucospilota) on Rarotonga, Cook Islands , 2003 .

[151]  Frank Simons,et al.  Potential of bio-indication of chironomid communities for assessment of running water quality in Flanders (Belgium) , 2004 .

[152]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques with Java implementations , 2002, SGMD.

[153]  C. Rodrigues-Pousada,et al.  Constitutive Flocculation in Saccharomyces cerevisiae Through Overexpression of the GTS1 Gene, coding for a ‘Glo’‐type Zn‐finger‐containing Protein , 1997, Yeast.

[154]  Anthony J. Jakeman,et al.  A framework for integrated catchment assessment in northern Thailand , 1999, Environ. Model. Softw..

[155]  G. Karaman,et al.  Freshwater Gammarus species from Europe, North Africa and adjacent regions of Asia (Crustacea-Amphipoda). Part II. Gammarus roeseli-group and related species , 1977 .

[156]  Peter Goethals,et al.  Modelling benthic macro-invertebrate communities in Flanders using artificial neural networks , 2000 .

[157]  Sovan Lek,et al.  Artificial neural networks as a tool in ecological modelling, an introduction , 1999 .

[158]  G. Minshall,et al.  The River Continuum Concept , 1980 .

[159]  R. Bassanezi,et al.  Fuzzy modelling in population dynamics , 2000 .

[160]  R. Costanza,et al.  SPECIAL ISSUE: The Dynamics and Value of Ecosystem Services: Integrating Economic and Ecological Perspectives Economic and ecological concepts for valuing ecosystem services , 2002 .

[161]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[162]  Peter C. Young,et al.  The modelling and control of water quality in a river system , 1974, Autom..

[163]  Niels De Pauw,et al.  Biological monitoring of river water quality , 1994 .

[164]  Karel Brabec,et al.  Assessment of organic pollution effect considering differences between lotic and lentic stream habitats , 2004, Hydrobiologia.

[165]  Peter Goethals,et al.  Use of Genetic Algorithms to select Input Variables in Artificial Neural Network Models for the Prediction of Benthic Macroinvertebrates , 2002 .

[166]  David E. Rumelhart,et al.  Predicting the Future: a Connectionist Approach , 1990, Int. J. Neural Syst..

[167]  Andrea Emilio Rizzoli,et al.  Delivering environmental decision support systems: Software tools and techniques , 1997 .

[168]  L.F.A. Wessels,et al.  Extrapolation and interpolation in neural network classifiers , 1992, IEEE Control Systems.

[169]  Friedrich Recknagel,et al.  Elucidation of Hypothetical Relationships between Habitat Conditions and Macroinvertebrate Assemblages in Freshwater Streams by Artificial Neural Networks , 2006 .

[170]  U. Braukmann,et al.  Stream acidification in South Germany – chemical and biological assessment methods and trends* , 2001, Aquatic Ecology.

[171]  Peter Goethals,et al.  Ecological informatics applications in water management conference, Gent (Belgium), 6-7 November 2002: Abstract book , 2002 .

[172]  Niels De Pauw,et al.  Overview and quantification of the factors affecting the upstream and downstream movements of Gammarus pulex (Amphipoda). , 2003, Communications in agricultural and applied biological sciences.

[173]  Peter Goethals,et al.  Development of an integrated system for ecological river quality assessment. , 2000 .

[174]  Lilian Alessa,et al.  Effects of knowledge, personal attribution and perception of ecosystem health on depreciative behaviors in the intertidal zone of Pacific Rim National Park and Reserve. , 2003, Journal of environmental management.

[175]  Colin R. Janssen,et al.  Application of rule induction techniques for detecting the possible impact of endocrine disruptors on the North Sea ecosystem , 2002 .

[176]  J. Dorgelo,et al.  British freshwater Crustacea, Malacostraca: a key with ecological notes. [Review of: D.W. Sutcliffe (1994) British freshwater Crustacea, Malacostraca: a key with ecological notes] , 1994 .

[177]  S. Manel,et al.  Evaluating presence-absence models in ecology: the need to account for prevalence , 2001 .

[178]  Jingtao Yao,et al.  Forecasting and Analysis of Marketing Data Using Neural Networks , 1998, J. Inf. Sci. Eng..

[179]  Heather A. Leslie,et al.  Development of an Index of Trophic Completeness for benthic macroinvertebrate communities in flowing waters , 2000, Hydrobiologia.

[180]  I. Dimopoulos,et al.  Role of some environmental variables in trout abundance models using neural networks , 1996 .

[181]  R. O'Neill,et al.  The value of the world's ecosystem services and natural capital , 1997, Nature.

[182]  G. David Garson,et al.  Interpreting neural-network connection weights , 1991 .

[183]  Ivan Bratko,et al.  Using machine learning techniques in the construction of models I. Introduction , 1994 .

[184]  R. L. Olson,et al.  A framework for modeling uncertain reasoning in ecosystem management. II. Bayesian belief networks , 1990 .

[185]  Stuart Hamilton,et al.  Multi-model integration in a decision support system: a technical user interface approach for watershed and lake management scenarios , 2004, Environ. Model. Softw..

[186]  W. T. Williams,et al.  Principles of Clustering , 1971 .

[187]  Helen M. Regan,et al.  A TAXONOMY AND TREATMENT OF UNCERTAINTY FOR ECOLOGY AND CONSERVATION BIOLOGY , 2002 .

[188]  Peter Goethals,et al.  Scaling Subgroup Meeting. European Aquatic Modelling Network COST626. 11-14 December 2002. Book of abstracts. , 2002 .

[189]  Ulrich Anders,et al.  Model selection in neural networks , 1999, Neural Networks.

[190]  P. G. Whitehead,et al.  Modelling algal growth and transport in rivers: a comparison of time series analysis, dynamic mass balance and neural network techniques , 1997, Hydrobiologia.

[191]  T. Sørensen,et al.  A method of establishing group of equal amplitude in plant sociobiology based on similarity of species content and its application to analyses of the vegetation on Danish commons , 1948 .

[192]  John Cairns,et al.  Biological monitoring: Part IIA—receiving system functional methods, relationships and indices , 1982 .

[193]  Ian T. Whitehurst,et al.  The impact of organic enrichment on the benthic macroinvertebrate communities of a lowland river , 1990 .

[194]  Niels De Pauw,et al.  Microhabitat preference of stream macrobenthos and its significance in water quality assessment , 1994 .

[195]  Christo Dichev,et al.  A cost-effective programmable environment for developing environmental decision support systems , 1999, Environ. Model. Softw..

[196]  T. Dapper,et al.  The influence of environmental variables on the abundance of aquatic insects: a comparison of ordination and artificial neural networks , 2000, Hydrobiologia.

[197]  L. Lau,et al.  Downscaling global information for regional benefit: coupling spatial models at varying space and time scales , 1999, Environ. Model. Softw..

[198]  Andrea Buffagni,et al.  The AQEM Multimetric System for the Southern Italian Apennines: Assessing the Impact of Water Quality and Habitat Degradation on Pool Macroinvertebrates in Mediterranean Rivers , 2004 .

[199]  Saso Dzeroski,et al.  Simultaneous Prediction of Mulriple Chemical Parameters of River Water Quality with TILDE , 1999, PKDD.

[200]  Mark E. Borsuk,et al.  A Bayesian network of eutrophication models for synthesis, prediction, and uncertainty analysis , 2004 .

[201]  M. Gevrey,et al.  Review and comparison of methods to study the contribution of variables in artificial neural network models , 2003 .

[202]  Mervyn Thomas,et al.  A Novel Bayesian Approach to Assessing Impacts of Rain Forest Logging , 1996 .

[203]  E. Fleishman,et al.  Modeling and Predicting Species Occurrence Using Broad‐Scale Environmental Variables: an Example with Butterflies of the Great Basin , 2001 .

[204]  Greg Seegert,et al.  The development, use, and misuse of biocriteria with an emphasis on the index of biotic integrity , 2000 .

[205]  Klaus-Robert Müller,et al.  Asymptotic statistical theory of overtraining and cross-validation , 1997, IEEE Trans. Neural Networks.

[206]  S. Pinkster,et al.  Population dynamics of three gammarid species (Crustacea, Amphipoda) in a French chalk stream. Part III. Migration , 1981 .

[207]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[208]  Peter Goethals,et al.  Ecological analysis of the Chironomid communities in the Zwalm river basin , 2003 .

[209]  Peter Goethals,et al.  Ecological informatics applications in water management , 2003 .

[210]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[211]  Peter Krebs,et al.  Setting up measuring campaigns for integrated wastewater modelling , 1999 .

[212]  D. M. Rosenberg,et al.  Freshwater biomonitoring and benthic macroinvertebrates. , 1994 .

[213]  P. L. M. Goethalsa,et al.  Coupling ecosystem valuation methods to the WAECO decision support system in the Zwalm Catchment ( Belgium ) , 2003 .

[214]  P. James,et al.  Development of sustainability indicators by communities in China: a case study of Chongming County, Shanghai. , 2003, Journal of environmental management.

[215]  J. Bols,et al.  On-line meetsystemen voor de opvolging van rivierwaterkwaliteit , 1999 .

[216]  M. Georgiopoulos,et al.  Feed-forward neural networks , 1994, IEEE Potentials.

[217]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[218]  Pier Francesco Ghetti,et al.  Biological assessment methods for running waters , 1992 .

[219]  Jaroslav Mohapl Measurement Diagnostics by Analysis of Last Digits , 2000 .

[220]  Hugh F. Clifford,et al.  Seasonal Movements of the Mayfly Leptophlebia cupida (Say) in a Brown-Water Stream of Alberta, Canada , 1974 .

[221]  Martin T. Hagan,et al.  Neural network design , 1995 .

[222]  F. M. Chutter,et al.  AN EMPIRICAL BIOTIC INDEX OF THE QUALITY OF WATER IN SOUTH AFRICAN STREAMS AND RIVERS , 1972 .

[223]  A. Rodrigues Capítulo,et al.  Use of benthic macroinvertebrates to assess the biological status of Pampean streams in Argentina , 2001, Aquatic Ecology.

[224]  Young-Seuk Park,et al.  Patterning and predicting aquatic macroinvertebrate diversities using artificial neural network. , 2003, Water research.

[225]  N De Pauw,et al.  Development of a fuzzy expert system for the prediction of macroinvertebrate taxa. , 2001, Mededelingen.

[226]  Donald Edward,et al.  AusRivAS: using macroinvertebrates to assess ecological condition of rivers in Western Australia , 1999 .

[227]  O. Soderstrom,et al.  Upstream movements of invertebrates in running waters: a review , 1987 .

[228]  Ming S. Hung,et al.  Estimating Posterior Probabilities In Classication Problems With Neural Networks , 1996 .

[229]  Ari Jolma,et al.  StreamPlan: a support system for water quality management on a river basin scale , 1997 .

[230]  Deborah V. Chapman,et al.  Water Quality Assessments: A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring , 1996 .

[231]  Fangju Wang,et al.  The Use of Artificial Neural Networks in a Geographical Information System for Agricultural Land-Suitability Assessment , 1994 .

[232]  W. Norwood,et al.  Quantification of bioavailable nickel in sediments and toxic thresholds to Hyalella azteca. , 2001, Environmental pollution.

[233]  Michael J. Shaw,et al.  A classification approach using multi-layered neural networks , 1994, Decis. Support Syst..

[234]  TOT DE DIERKUNDE,et al.  Population dynamics of three gammarid species ( Crustacea , Amphipoda ) in a French chalk stream . Part IV , 2022 .

[235]  J. Kros,et al.  Towards integrated national modelling with particular reference to the environmental effects of nutrients , 1998 .

[236]  Brian Dennis,et al.  Discussion: Should Ecologists Become Bayesians? , 1996 .

[237]  Danny C. Lee,et al.  Population Viability Assessment of Salmonids by Using Probabilistic Networks , 1997 .

[238]  Sašo Džeroski,et al.  Biological Monitoring: a Comparison between Bayesian, Neural and Machine Learning Methods of Water Quality Classification. , 1996 .

[239]  Peter Goethals,et al.  Relations between structural characteristics and macroinvertebrate communities in the Zwalm river basin at different spatial scales , 2002 .

[240]  Kenneth H. Reckhow,et al.  Bayesian Approaches in Ecological Analysis and Modeling , 2002 .

[241]  Mike T. Furse,et al.  The development of the BEAST: a predictive approach for assessing sediment quality in the North American Great Lakes. , 2000 .

[242]  A van Griensven,et al.  Optimisation of the discrete conductivity and dissolved oxygen monitoring using continuous data series obtained with automated measurement stations. , 2001, Mededelingen.

[243]  Peter Goethals,et al.  Development of a monitoring network to model the habitat suitability of macroinvertebrates in the Zwalm river basin (Flanders, Belgium) , 2003 .

[244]  P. J. den Besten,et al.  Sediment quality assessment in the delta of rivers Rhine and Meuse based on field observations, bioassays and food chain implications , 1995 .

[245]  Kenneth Marsh Mackenthun,et al.  The Practice of Water Pollution Biology , 2004 .

[246]  R. Norris,et al.  What is river health , 1999 .

[247]  Philip M. Dixon,et al.  Introduction: Ecological Applications of Bayesian Inference , 1996 .

[248]  Saso Dzeroski,et al.  Experiments with TILDE in the river water quality domain , 1999 .

[249]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[250]  Yannis Dimopoulos,et al.  Use of some sensitivity criteria for choosing networks with good generalization ability , 1995, Neural Processing Letters.

[251]  John H. Rodgers,et al.  Measuring bioavailable copper using anodic stripping voltammetry , 1996 .

[252]  Peter Goethals,et al.  Development of a decision support system for integrated water management in the Zwalm river basin, Belgium. , 2002 .

[253]  Friedrich Recknagel,et al.  Ecological Informatics: Understanding Ecology by Biologically-Inspired Computation , 2003 .

[254]  B. Malmqvist,et al.  The biology of streams and rivers , 1998 .

[255]  Geoffrey E. Hinton,et al.  Learning representations by back-propagation errors, nature , 1986 .

[256]  Alexey A. Voinov,et al.  Modular ecosystem modeling , 2004, Environ. Model. Softw..

[257]  J. A. Schot,et al.  The 5-S-Model, an integrated approach for stream rehabilitation , 1998 .

[258]  William Gurney,et al.  POPULATION PERSISTENCE IN RIVERS AND ESTUARIES , 2001 .

[259]  Timothy C. Haas,et al.  Modeling aspen stand growth with a temporal Bayes network , 1994 .

[260]  Michele Scardi,et al.  Developing an empirical model of phytoplankton primary production: a neural network case study , 1999 .

[261]  David A. Swayne,et al.  Issues of EIS software design: some lessons learned in the past decade , 2001, Environ. Model. Softw..

[262]  J. T. Curtis,et al.  An Ordination of the Upland Forest Communities of Southern Wisconsin , 1957 .

[263]  Ralf Denzer,et al.  TEMSIS - a transnational system for public information and environmental decision support , 2000, Environ. Model. Softw..

[264]  Peter Goethals,et al.  A fish-based index of biotic integrity for upstream brooks in Flanders (Belgium) , 2004, Hydrobiologia.

[265]  Young-Seuk Park,et al.  Non-linear Approach to Grouping, Dynamics and Organizational Informatics of Benthic Macroinvertebrate Communities in Streams by Artificial Neural Networks , 2006 .

[266]  Peter Goethals,et al.  Use of Artificial Neural Networks (ANNs) and Geographical Information Systems (GIS) to simulate the migration of macroinvertebrates in the Zwalm river basin (Flanders, Belgium). , 2002 .

[267]  Peter Goethals,et al.  Wastewater treatment by natural systems in Ho Chi Minh City (Vietnam) , 2003 .

[268]  W. Norwood,et al.  Toxicity and bioaccumulation of thallium in Hyalella azteca, with comparison to other metals and prediction of environmental impact. , 1998, Environmental pollution.

[269]  Hans-Jürgen Zimmermann,et al.  Fuzzy Set Theory - and Its Applications , 1985 .

[270]  W. J. Young,et al.  Development of an environmental flows decision support system , 2000, Environ. Model. Softw..

[271]  Peter Goethals,et al.  2.3.9. Ecological informatics in river management. , 2002 .

[272]  I. Flood,et al.  Neural networks in civil engineering: a review , 2001 .

[273]  Vassilios A Tsihrintzis,et al.  A quantitative method for accounting human opinion, preferences and perceptions in ecosystem management. , 2003, Journal of environmental management.

[274]  W. Hilsenhoff Rapid Field Assessment of Organic Pollution with a Family-Level Biotic Index , 1988, Journal of the North American Benthological Society.

[275]  Yosef Cohen Bayesian Estimation of Clutch Size for Scientific and Management Purposes , 1988 .

[276]  J. Metcalfe,et al.  Biological water quality assessment of running waters based on macroinvertebrate communities: history and present status in Europe. , 1989, Environmental pollution.

[277]  Friedrich Recknagel,et al.  Relationships between habitat properties and the occurrence of macroinvertebrates in Queensland streams (Australia) discovered by a sensitivity analysis with artificial neural networks , 2002 .

[278]  A. Tessier,et al.  Cadmium accumulation by invertebrates living at the sediment–water interface , 2001, Environmental toxicology and chemistry.

[279]  Andy P. Dedecker,et al.  Development of an in-stream migration model for Gammarus pulex L. (Crustacea, Amphipoda) as a tool in river restoration management , 2006, Aquatic Ecology.

[280]  Robert M. Argent,et al.  An overview of model integration for environmental applications--components, frameworks and semantics , 2004, Environ. Model. Softw..

[281]  Peter Davies,et al.  Development of a national river bioassessment system (AUSRIVAS) in Australia. , 2000 .

[282]  J. Karr,et al.  Restoring life in running waters : better biological monitoring , 1998 .

[283]  Peter Goethals Resources guide: water and ecology , 2001 .

[284]  S. Lek,et al.  Applications of artificial neural networks for patterning and predicting aquatic insect species richness in running waters , 2003 .

[285]  Herbert E. Allen,et al.  Ecotoxicology of metals in aquatic sediments : binding and release, bioavailability, risk assessment, and remediation , 1998 .

[286]  Peter Goethals,et al.  Development and Application of Predictive River Ecosystem Models Based on Classification Trees and Artificial Neural Networks , 2003 .

[287]  Vladimir Cherkassky,et al.  Data representation for diagnostic neural networks , 1992, IEEE Expert.

[288]  J. R. Karr,et al.  Restoring life in running waters , 1998 .

[289]  Young-Seuk Park,et al.  Patterning and short-term predictions of benthic macroinvertebrate community dynamics by using a recurrent artificial neural network , 2001 .

[290]  J. Knoop,et al.  Integrated modelling for nutrient loading of polder lakes , 2002 .

[291]  T. Reynoldson,et al.  Identifying cause in sediment assessments: Bioavailability and the Sediment Quality Triad , 2001 .

[292]  W. J. Walley,et al.  Neural network predictors of average score per taxon and number of families at unpolluted river sites in Great Britain , 1998 .

[293]  V. Vandenberghe,et al.  Detection of the most optimal measuring points for water quality variables: application to the river water quality model of the River Dender in ESWAT. , 2002, Water science and technology : a journal of the International Association on Water Pollution Research.

[294]  E.T.H.M. Peeters,et al.  Benthic macroinvertebrates and multiple stressors : quantification of the effects of multiple stressors in field, laboratory and model settings , 2001 .

[295]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[296]  J. Cairns,et al.  The sequential comparison index--a simplified method for non-biologists to estimate relative differences in biological diversity in stream pollution studies. , 1968, Journal - Water Pollution Control Federation.

[297]  Brendan J. Hicks,et al.  Macroinvertebrates and water quality: a teaching guide , 2002 .

[298]  Harry H. Tolkamp Microdistribution of macroinvertebrates in lowland streams , 2005, Hydrobiological Bulletin.

[299]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[300]  C. Wesenberg-Lund,et al.  Biologie der Süsswassertiere: Wirbellose Tiere , 1939 .

[301]  Peter Clark,et al.  The CN2 induction algorithm , 2004, Machine Learning.

[302]  Deborah V. Chapman,et al.  Water Quality Assessments , 1992 .

[303]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[304]  J. R. Chandler A biological Approach to water quality management , 1970 .

[305]  Graeme D. Ruxton,et al.  Is there really a drift paradox , 2002 .

[306]  A. Hirzel,et al.  Which is the optimal sampling strategy for habitat suitability modelling , 2002 .

[307]  H. Washington,et al.  Diversity, biotic and similarity indices: A review with special relevance to aquatic ecosystems , 1984 .

[308]  Ning Qian,et al.  On the momentum term in gradient descent learning algorithms , 1999, Neural Networks.

[309]  Bernard De Baets,et al.  Fuzzy rule-based models for decision support in ecosystem management. , 2004, The Science of the total environment.

[310]  Russell G. Death,et al.  An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data , 2004 .

[311]  P. L. M. Goethals,et al.  Prediction of macroinvertebrate communities in sediments of Flemish watercourses based on artificial neural networks , 2002 .

[312]  N De Pauw,et al.  River management applications of ecosystem models predicting aquatic acroinvertebrate communities based on artificial neural networks (ANNS). , 2001, Mededelingen.

[313]  Eric B. Bartlett,et al.  Dynamic node architecture learning: An information theoretic approach , 1994, Neural Networks.

[314]  Gerald T. Ankley,et al.  Technical basis and proposal for deriving sediment quality criteria for metals : Metal bioavailability in sediments , 1996 .

[315]  N De Pauw,et al.  Impact of land-use on macroinvertebrate communities in the Zwalm river basin. , 2001, Mededelingen.

[316]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[317]  Colin R. Townsend,et al.  Habitat scale and biodiversity: influence of catchment, stream reach and bedform scales on local invertebrate diversity , 2003, Biodiversity & Conservation.

[318]  Michael T. Barbour,et al.  Rapid bioassessment protocols for use in streams and rivers , 1989 .

[319]  William H. Desvousges,et al.  The use of habitat equivalency analysis in natural resource damage assessments , 2004 .

[320]  William G. Booty,et al.  Design and implementation of an environmental decision support system , 2001, Environ. Model. Softw..

[321]  L. L. Rogers,et al.  Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling , 1994 .

[322]  Wael R. Elwasif,et al.  Predicting performance from test scores using backpropagation and counterpropagation , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[323]  William Silvert,et al.  Fuzzy indices of environmental conditions , 2000 .

[324]  G. W. Minshall,et al.  Factors affecting microdistribution of stream benthic insects , 1977 .

[325]  Julian D. Olden,et al.  Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks , 2002 .

[326]  Holger R. Maier,et al.  Neural networks for the prediction and forecasting of water resource variables: a review of modelling issues and applications , 2000, Environ. Model. Softw..

[327]  G. Karaman,et al.  Freshwater Gammarus Species from Europe, North Africa and Adjacent Regions of Asia (Crustacea-Amphipoda). , 1977 .

[328]  Sovan Lek,et al.  Predicting the abundance of minnow Phoxinus phoxinus (Cyprinidae) in the River Ariège (France) using artificial neural networks , 1997 .

[329]  B. Marcot,et al.  Using Bayesian belief networks to evaluate fish and wildlife population viability under land management alternatives from an environmental impact statement , 2001 .

[330]  N H McCoy,et al.  Behavioral externalities in natural resource production possibility frontiers: integrating biology and economics to model human-wildlife interactions. , 2003, Journal of environmental management.

[331]  Niels De Pauw,et al.  Comparison of Artificial Neural Network (ANN) Model Development Methods for Prediction of Macroinvertebrate Communities in the Zwalm River Basin in Flanders, Belgium , 2002, TheScientificWorldJournal.

[332]  John E. Brittain,et al.  Invertebrate drift — A review , 1988, Hydrobiologia.

[333]  Roel Smolders,et al.  An Index of Biotic Integrity characterizing fish populations and the ecological quality of Flandrian water bodies , 2000, Hydrobiologia.

[334]  K. Scott,et al.  TOXICITY OF CADMIUM IN SEDIMENTS: THE ROLE OF ACID VOLATILE SULFIDE , 1990 .

[335]  Ralf Wieland,et al.  Species density of foliage-dwelling spiders in field margins: a simple, fuzzy rule-based model , 2000 .

[336]  J N Lester,et al.  Public perceptions and attitudes towards an established managed realignment scheme: Orplands, Essex, UK. , 2003, Journal of environmental management.

[337]  A. Salski,et al.  A fuzzy knowledge-based model of population dynamics of the Yellow-necked mouse (Apodemus flavicollis) in a beech forest , 1998 .

[338]  Andrew H. Sung,et al.  Ranking importance of input parameters of neural networks , 1998 .

[339]  Aaron M. Ellison,et al.  AN INTRODUCTION TO BAYESIAN INFERENCE FOR ECOLOGICAL RESEARCH AND ENVIRONMENTAL , 1996 .