Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism
暂无分享,去创建一个
[1] Mogens Flensted‐Jensen,et al. GROUPS AND GEOMETRIC ANALYSIS Integral Geometry, Invariant Differential Operators, and Spherical Functions (Pure and Applied Mathematics: A Series of Monographs and Textbooks) , 1985 .
[2] Takahiro Hayashi,et al. Sugawara operators and Kac-Kazhdan conjecture , 1988 .
[3] D. Quillen,et al. Higher algebraic K-theory: I , 1973 .
[4] Gunter Malle,et al. COMPLEX REFLECTION GROUPS, BRAID GROUPS, HECKE ALGEBRAS , 1998 .
[5] Wolfgang Soergel,et al. Koszul Duality Patterns in Representation Theory , 1996 .
[6] M. Lehn,et al. Symmetric groups and the cup product on the cohomology of Hilbert schemes , 2000, math/0009131.
[7] Principal nilpotent pairs in a semisimple Lie algebra 1 , 1999, math/9903059.
[8] R. Guralnick. A note on pairs of matrices with rank one commutator , 1979 .
[9] Jacques Alev,et al. Homologie des invariants d'une algèbre de Weyl sous l'action d'un groupe fini☆☆☆ , 2000 .
[10] J. Björk. The Auslander condition on noetherian rings , 1989 .
[11] J. Block. Cyclic homology of filtered algebras , 1987 .
[12] A Lie algebra generalization of the Amitsur-Levitski theorem , 1981 .
[13] Alexander Braverman,et al. Poincaré–Birkhoff–Witt Theorem for Quadratic Algebras of Koszul Type , 1994 .
[14] A. Joseph. On a Harish-Chandra homomorphism , 1997 .
[15] W. Crawley-Boevey. Geometry of the Moment Map for Representations of Quivers , 2001, Compositio Mathematica.
[16] J. T. Stafford. Homological properties of the enveloping algebra U(Sl2) , 1982, Mathematical Proceedings of the Cambridge Philosophical Society.
[17] Non-Archimedean integrals and stringy Euler numbers of log-terminal pairs , 1998, math/9803071.
[18] G. Wilson. Collisions of Calogero-Moser particles and an adelic Grassmannian (With an Appendix by I.G. Macdonald) , 1998 .
[19] Spherical functions on affine Lie groups , 1994, hep-th/9407047.
[20] Y. Markov,et al. Hankel transform via double Hecke algebra , 2000, math/0004116.
[21] V. Drinfel'd,et al. Degenerate affine hecke algebras and Yangians , 1986 .
[22] Kei-ichi Watanabe. Certain invariant subrings are Gorenstein. II , 1974 .
[23] B. Kostant,et al. Lie Group Representations on Polynomial Rings , 1963 .
[24] A. Beilinson,et al. A proof of Jantzen conjectures , 1993 .
[25] Rings with Auslander Dualizing Complexes , 1998, math/9804005.
[26] Shlomo Sternberg,et al. Hamiltonian group actions and dynamical systems of calogero type , 1978 .
[27] Arjeh M. Cohen,et al. Finite Quaternionic Reflection Groups , 1980 .
[28] M. Bergh. Existence Theorems for Dualizing Complexes over Non-commutative Graded and Filtered Rings , 1997 .
[29] M. Reid. La correspondance de McKay , 1999, math/9911165.
[30] Harish-Chandra. Invariant Differential Operators and Distributions on a Semisimple Lie Algebra , 1964 .
[31] M. Kontsevich. Deformation Quantization of Poisson Manifolds , 1997, q-alg/9709040.
[32] A. Perelomov,et al. Quantum Integrable Systems Related to Lie Algebras , 1983 .
[33] M. P. Holland. Quantization of the Marsden-Weinstein reduction for extended Dynkin quivers , 1999 .
[34] H. Weyl. The Classical Groups , 1940 .
[35] William Crawley-Boevey,et al. NONCOMMUTATIVE DEFORMATIONS OF KLEINIAN SINGULARITIES , 1998 .
[36] Jean-Luc Brylinski,et al. A differential complex for Poisson manifolds , 1988 .
[37] H. Nakajima. Quiver varieties and Kac-Moody algebras , 1998 .
[38] D. Kaledin. McKay correspondence for symplectic quotient singularities , 1999, math/9907087.
[39] J. McConnell,et al. Noncommutative Noetherian Rings , 2001 .
[40] Symplectic resolutions: deformations and birational maps , 2000, math/0012008.
[41] Hilbert schemes, wreath products, and the McKay correspondence , 1999, math/9912104.
[42] I. Cherednik. A unification of Knizhnik-Zamolodchikov and Dunkl operators via affine Hecke algebras , 1991 .
[43] B. Kostant. The set of Abelian ideals of a Borel subalgebra, Cartan decompositions, and discrete series representations , 1998 .
[44] J. T. Stafford,et al. Invariant differential operators and an homomorphism of Harish-Chandra , 1995 .
[45] H. Nakajima. Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras , 1994 .
[46] E. Vasserot. Sur l'anneau de cohomologie du schéma de Hilbert de ? , 2000, math/0009127.
[47] Certain invariant subrings are Gorenstein. II , 1974 .
[48] Eric M. Opdam,et al. Some applications of hypergeometric shift operators , 1989 .
[49] Charles F. Dunkl,et al. Differential-difference operators associated to reflection groups , 1989 .
[50] J. T. Stafford,et al. The kernel of an homomorphism of Harish-Chandra , 1996 .
[51] M. Semenov-Tian-Shansky. Poisson Lie Groups, Quantum Duality Principle, and the Quantum Double , 1993, hep-th/9304042.
[52] Alexander Kirillov,et al. Lectures on affine Hecke algebras and Macdonald’s conjectures , 1997 .
[53] Ivan Cherednik,et al. Double affine hecke algebras, knizhnik-zamolodchikov equations, and macdonald’s operators , 1992 .
[54] S. Montgomery. Fixed Rings of Finite Automorphism Groups of Associative Rings , 1980 .
[55] Jean-Pierre Serre,et al. Algèbre locale : multiplicités , 1957 .
[56] Misha Verbitsky,et al. Holomorphic symplectic geometry and orbifold singularities , 1999, math/9903175.
[57] 河東 泰之,et al. A.Connes:Noncommutative Geometry , 1997 .
[58] J. Bernstein,et al. The Cohen-Macaulay property of the category of ( g , K )-modules , 1997 .
[59] Automorphisms and ideals of the Weyl algebra , 2000, math/0102190.
[60] L. Makar-Limanov. Automorphisms of A free algebra with two generators , 1970 .
[61] S. Helgason. Groups and geometric analysis , 1984 .
[62] N. Chriss,et al. Representation theory and complex geometry , 1997 .
[63] N. Wallach. Invariant differential operators on a reductive Lie algebra and Weyl group representations , 1993 .
[64] A. Broer. The sum of generalized exponents and Chevalley's restriction theorem for modules of covariants , 1995 .
[65] A. Joseph,et al. The Minimal Realization from Deformation Theory , 1998 .
[66] Algebra structure on the Hochschild cohomology of the ring of invariants of a Weyl algebra under a finite group , 2001, math/0109068.