Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism

Abstract.To any finite group Γ⊂Sp(V) of automorphisms of a symplectic vector space V we associate a new multi-parameter deformation, Hκ of the algebra ℂ[V]#Γ, smash product of Γ with the polynomial algebra on V. The parameter κ runs over points of ℙr, where r=number of conjugacy classes of symplectic reflections in $Γ$. The algebra Hκ, called a symplectic reflection algebra, is related to the coordinate ring of a Poisson deformation of the quotient singularity V/Γ. This leads to a symplectic analogue of McKay correspondence, which is most complete in case of wreath-products. If Γ is the Weyl group of a root system in a vector space ? and V=?⊕?*, then the algebras Hκ are certain ‘rational’ degenerations of the double affine Hecke algebra introduced earlier by Cherednik.Let $Γ=Sn, the Weyl group of ?=??n. We construct a 1-parameter deformation of the Harish-Chandra homomorphism from ?(?)?, the algebra of invariant polynomial differential operators on ??n, to the algebra of Sn-invariant differential operators with rational coefficients on the space ℂn of diagonal matrices. The second order Laplacian on ? goes, under the deformed homomorphism, to the Calogero-Moser differential operator on ℂn, with rational potential. Our crucial idea is to reinterpret the deformed Harish-Chandra homomorphism as a homomorphism: ?(?)? ↠ spherical subalgebra in Hκ, where Hκ is the symplectic reflection algebra associated to the group Γ=Sn. This way, the deformed Harish-Chandra homomorphism becomes nothing but a description of the spherical subalgebra in terms of ‘quantum’ Hamiltonian reduction.In the ‘classical’ limit κ→∞, our construction gives an isomorphism between the spherical subalgebra in H∞ and the coordinate ring of the Calogero-Moser space. We prove that all simple H∞-modules have dimension n!, and are parametrised by points of the Calogero-Moser space. The family of these modules forms a distinguished vector bundle on the Calogero-Moser space, whose fibers carry the regular representation of Sn. Moreover, we prove that the algebra $H∞ is isomorphic to the endomorphism algebra of that vector bundle.

[1]  Mogens Flensted‐Jensen,et al.  GROUPS AND GEOMETRIC ANALYSIS Integral Geometry, Invariant Differential Operators, and Spherical Functions (Pure and Applied Mathematics: A Series of Monographs and Textbooks) , 1985 .

[2]  Takahiro Hayashi,et al.  Sugawara operators and Kac-Kazhdan conjecture , 1988 .

[3]  D. Quillen,et al.  Higher algebraic K-theory: I , 1973 .

[4]  Gunter Malle,et al.  COMPLEX REFLECTION GROUPS, BRAID GROUPS, HECKE ALGEBRAS , 1998 .

[5]  Wolfgang Soergel,et al.  Koszul Duality Patterns in Representation Theory , 1996 .

[6]  M. Lehn,et al.  Symmetric groups and the cup product on the cohomology of Hilbert schemes , 2000, math/0009131.

[7]  Principal nilpotent pairs in a semisimple Lie algebra 1 , 1999, math/9903059.

[8]  R. Guralnick A note on pairs of matrices with rank one commutator , 1979 .

[9]  Jacques Alev,et al.  Homologie des invariants d'une algèbre de Weyl sous l'action d'un groupe fini☆☆☆ , 2000 .

[10]  J. Björk The Auslander condition on noetherian rings , 1989 .

[11]  J. Block Cyclic homology of filtered algebras , 1987 .

[12]  A Lie algebra generalization of the Amitsur-Levitski theorem , 1981 .

[13]  Alexander Braverman,et al.  Poincaré–Birkhoff–Witt Theorem for Quadratic Algebras of Koszul Type , 1994 .

[14]  A. Joseph On a Harish-Chandra homomorphism , 1997 .

[15]  W. Crawley-Boevey Geometry of the Moment Map for Representations of Quivers , 2001, Compositio Mathematica.

[16]  J. T. Stafford Homological properties of the enveloping algebra U(Sl2) , 1982, Mathematical Proceedings of the Cambridge Philosophical Society.

[17]  Non-Archimedean integrals and stringy Euler numbers of log-terminal pairs , 1998, math/9803071.

[18]  G. Wilson Collisions of Calogero-Moser particles and an adelic Grassmannian (With an Appendix by I.G. Macdonald) , 1998 .

[19]  Spherical functions on affine Lie groups , 1994, hep-th/9407047.

[20]  Y. Markov,et al.  Hankel transform via double Hecke algebra , 2000, math/0004116.

[21]  V. Drinfel'd,et al.  Degenerate affine hecke algebras and Yangians , 1986 .

[22]  Kei-ichi Watanabe Certain invariant subrings are Gorenstein. II , 1974 .

[23]  B. Kostant,et al.  Lie Group Representations on Polynomial Rings , 1963 .

[24]  A. Beilinson,et al.  A proof of Jantzen conjectures , 1993 .

[25]  Rings with Auslander Dualizing Complexes , 1998, math/9804005.

[26]  Shlomo Sternberg,et al.  Hamiltonian group actions and dynamical systems of calogero type , 1978 .

[27]  Arjeh M. Cohen,et al.  Finite Quaternionic Reflection Groups , 1980 .

[28]  M. Bergh Existence Theorems for Dualizing Complexes over Non-commutative Graded and Filtered Rings , 1997 .

[29]  M. Reid La correspondance de McKay , 1999, math/9911165.

[30]  Harish-Chandra Invariant Differential Operators and Distributions on a Semisimple Lie Algebra , 1964 .

[31]  M. Kontsevich Deformation Quantization of Poisson Manifolds , 1997, q-alg/9709040.

[32]  A. Perelomov,et al.  Quantum Integrable Systems Related to Lie Algebras , 1983 .

[33]  M. P. Holland Quantization of the Marsden-Weinstein reduction for extended Dynkin quivers , 1999 .

[34]  H. Weyl The Classical Groups , 1940 .

[35]  William Crawley-Boevey,et al.  NONCOMMUTATIVE DEFORMATIONS OF KLEINIAN SINGULARITIES , 1998 .

[36]  Jean-Luc Brylinski,et al.  A differential complex for Poisson manifolds , 1988 .

[37]  H. Nakajima Quiver varieties and Kac-Moody algebras , 1998 .

[38]  D. Kaledin McKay correspondence for symplectic quotient singularities , 1999, math/9907087.

[39]  J. McConnell,et al.  Noncommutative Noetherian Rings , 2001 .

[40]  Symplectic resolutions: deformations and birational maps , 2000, math/0012008.

[41]  Hilbert schemes, wreath products, and the McKay correspondence , 1999, math/9912104.

[42]  I. Cherednik A unification of Knizhnik-Zamolodchikov and Dunkl operators via affine Hecke algebras , 1991 .

[43]  B. Kostant The set of Abelian ideals of a Borel subalgebra, Cartan decompositions, and discrete series representations , 1998 .

[44]  J. T. Stafford,et al.  Invariant differential operators and an homomorphism of Harish-Chandra , 1995 .

[45]  H. Nakajima Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras , 1994 .

[46]  E. Vasserot Sur l'anneau de cohomologie du schéma de Hilbert de ? , 2000, math/0009127.

[47]  Certain invariant subrings are Gorenstein. II , 1974 .

[48]  Eric M. Opdam,et al.  Some applications of hypergeometric shift operators , 1989 .

[49]  Charles F. Dunkl,et al.  Differential-difference operators associated to reflection groups , 1989 .

[50]  J. T. Stafford,et al.  The kernel of an homomorphism of Harish-Chandra , 1996 .

[51]  M. Semenov-Tian-Shansky Poisson Lie Groups, Quantum Duality Principle, and the Quantum Double , 1993, hep-th/9304042.

[52]  Alexander Kirillov,et al.  Lectures on affine Hecke algebras and Macdonald’s conjectures , 1997 .

[53]  Ivan Cherednik,et al.  Double affine hecke algebras, knizhnik-zamolodchikov equations, and macdonald’s operators , 1992 .

[54]  S. Montgomery Fixed Rings of Finite Automorphism Groups of Associative Rings , 1980 .

[55]  Jean-Pierre Serre,et al.  Algèbre locale : multiplicités , 1957 .

[56]  Misha Verbitsky,et al.  Holomorphic symplectic geometry and orbifold singularities , 1999, math/9903175.

[57]  河東 泰之,et al.  A.Connes:Noncommutative Geometry , 1997 .

[58]  J. Bernstein,et al.  The Cohen-Macaulay property of the category of ( g , K )-modules , 1997 .

[59]  Automorphisms and ideals of the Weyl algebra , 2000, math/0102190.

[60]  L. Makar-Limanov Automorphisms of A free algebra with two generators , 1970 .

[61]  S. Helgason Groups and geometric analysis , 1984 .

[62]  N. Chriss,et al.  Representation theory and complex geometry , 1997 .

[63]  N. Wallach Invariant differential operators on a reductive Lie algebra and Weyl group representations , 1993 .

[64]  A. Broer The sum of generalized exponents and Chevalley's restriction theorem for modules of covariants , 1995 .

[65]  A. Joseph,et al.  The Minimal Realization from Deformation Theory , 1998 .

[66]  Algebra structure on the Hochschild cohomology of the ring of invariants of a Weyl algebra under a finite group , 2001, math/0109068.