Separable evoked retinal and cortical potentials from each major visual pathway: preliminary results.

Single cell experiments in primates show that there are two major parallel pathways named after the lamination in the lateral geniculate nucleus. Each of these systems can be preferentially excited by appropriate stimuli. Here we report that in man the polarity of the evoked potentials both in retina and in cortex depends on which of these pathways is stimulated. The identification of the resulting waveforms is thereby simplified--a matter of practical importance. The fact that at retina and cortex there are characteristic potentials may reflect the different cell biology of the two pathways.

[1]  A. Fiorentini,et al.  Electroretinographic responses to alternating gratings before and after section of the optic nerve. , 1981, Science.

[2]  F M de Monasterio,et al.  Properties of ganglion cells with atypical receptive-field organization in retina of macaques. , 1978, Journal of neurophysiology.

[3]  R. Shapley,et al.  The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[4]  G. Holder,et al.  Significance of abnormal pattern electroretinography in anterior visual pathway dysfunction. , 1987, The British journal of ophthalmology.

[5]  G. Arden,et al.  Electrophysiological discrimination between retinal and optic nerve disorders. , 1988, Metabolic, pediatric, and systemic ophthalmology.

[6]  Luminance-contrast evoked responses and color-contrast evoked responses in the human electroretinogram , 1988, Vision Research.

[7]  R. Shapley,et al.  X and Y cells in the lateral geniculate nucleus of macaque monkeys. , 1982, The Journal of physiology.

[8]  C. Teping,et al.  Topodiagnostik von Sehstörungen durch Ableitung retinaler und kortikaler Antworten auf Umkehr-Kontrastmuster , 1980 .

[9]  Ian J. Murray,et al.  Human Visual Evoked-Potentials to Chromatic and Achromatic Gratings , 1987 .

[10]  F. M. D. Monasterio Properties of concentrically organized X and Y ganglion cells of macaque retina. , 1978 .

[11]  G. Plant,et al.  Transient visually evoked potentials to the pattern reversal and onset of sinusoidal gratings. , 1983, Electroencephalography and clinical neurophysiology.

[12]  B. Cole,et al.  Difictive colour vision can impede information acquisition form redundantly colour‐Coded video displays , 1988, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[13]  S. Karplus,et al.  ‘Foveal Tritanopia’ , 1947, Nature.

[14]  T. Wiesel,et al.  Functional architecture of macaque monkey visual cortex , 1977 .

[15]  DH Hubel,et al.  Psychophysical evidence for separate channels for the perception of form, color, movement, and depth , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  R. Shapley,et al.  Spatial summation and contrast sensitivity of X and Y cells in the lateral geniculate nucleus of the macaque , 1981, Nature.

[17]  D. G. Green,et al.  Optical and retinal factors affecting visual resolution. , 1965, The Journal of physiology.

[18]  Vaegan,et al.  CLINICAL AND EXPERIMENTAL EVIDENCE THAT THE PATTERN ELECTRORETINOGRAM (PERG) IS GENERATED IN MORE PROXIMAL RETINAL LAYERS THAN THE FOCAL ELECTRORETINOGRAM (FERG) , 1980, Annals of the New York Academy of Sciences.

[19]  F. de Monasterio,et al.  Properties of concentrically organized X and Y ganglion cells of macaque retina. , 1978, Journal of neurophysiology.

[20]  F. M. D. Monasterio Center and surround mechanisms of opponent-color X and Y ganglion cells of retina of macaques. , 1978 .

[21]  P. Gouras,et al.  Responses of cells in foveal visual cortex of the monkey to pure color contrast. , 1979, Journal of neurophysiology.

[22]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  W. Dawson,et al.  Human pattern-evoked retinal responses are altered by optic atrophy. , 1982, Investigative ophthalmology & visual science.

[24]  K. Kawasaki,et al.  [Negative wave in human pattern ERG and its suppression in glaucoma]. , 1986, Nippon Ganka Gakkai zasshi.

[25]  J. Kulikowski,et al.  Proceedings: Human averaged occipital potentials evoked by pattern and movement. , 1974, The Journal of physiology.

[26]  P. Gouras Identification of cone mechanisms in monkey ganglion cells , 1968, The Journal of physiology.

[27]  R. Shapley,et al.  Cat and monkey retinal ganglion cells and their visual functional roles , 1986, Trends in Neurosciences.

[28]  P. Lennie,et al.  Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[29]  D. Hubel,et al.  Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. , 1966, Journal of neurophysiology.

[30]  P Gouras,et al.  Antidromic responses of orthodromically identified ganglion cells in monkey retina , 1969, The Journal of physiology.

[31]  F M de Monasterio,et al.  Center and surround mechanisms of opponent-color X and Y ganglion cells of retina of macaques. , 1978, Journal of neurophysiology.

[32]  DH Hubel,et al.  Segregation of form, color, and stereopsis in primate area 18 , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  C. Baker,et al.  Human pattern-evoked electroretinogram. , 1984, Journal of neurophysiology.

[34]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[35]  Vaegan,et al.  Electroretinograms evoked in man by local uniform or patterned stimulation , 1983, The Journal of physiology.

[36]  D H Hubel,et al.  Connections between layer 4B of area 17 and the thick cytochrome oxidase stripes of area 18 in the squirrel monkey , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  N. Drasdo Cortical potentials evoked by pattern presentation in the foveal region , 1980 .

[38]  P Gouras,et al.  Enchancement of luminance flicker by color-opponent mechanisms. , 1979, Science.

[39]  D. Regan Evoked potentials specific to spatial patterns of luminance and colour. , 1973, Vision research.