Separable evoked retinal and cortical potentials from each major visual pathway: preliminary results.
暂无分享,去创建一个
G B Arden | T. Frumkes | G. Arden | C. Hogg | T A Berninger | T. Berninger | C R Hogg | T Frumkes
[1] A. Fiorentini,et al. Electroretinographic responses to alternating gratings before and after section of the optic nerve. , 1981, Science.
[2] F M de Monasterio,et al. Properties of ganglion cells with atypical receptive-field organization in retina of macaques. , 1978, Journal of neurophysiology.
[3] R. Shapley,et al. The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. , 1986, Proceedings of the National Academy of Sciences of the United States of America.
[4] G. Holder,et al. Significance of abnormal pattern electroretinography in anterior visual pathway dysfunction. , 1987, The British journal of ophthalmology.
[5] G. Arden,et al. Electrophysiological discrimination between retinal and optic nerve disorders. , 1988, Metabolic, pediatric, and systemic ophthalmology.
[6] Luminance-contrast evoked responses and color-contrast evoked responses in the human electroretinogram , 1988, Vision Research.
[7] R. Shapley,et al. X and Y cells in the lateral geniculate nucleus of macaque monkeys. , 1982, The Journal of physiology.
[8] C. Teping,et al. Topodiagnostik von Sehstörungen durch Ableitung retinaler und kortikaler Antworten auf Umkehr-Kontrastmuster , 1980 .
[9] Ian J. Murray,et al. Human Visual Evoked-Potentials to Chromatic and Achromatic Gratings , 1987 .
[10] F. M. D. Monasterio. Properties of concentrically organized X and Y ganglion cells of macaque retina. , 1978 .
[11] G. Plant,et al. Transient visually evoked potentials to the pattern reversal and onset of sinusoidal gratings. , 1983, Electroencephalography and clinical neurophysiology.
[12] B. Cole,et al. Difictive colour vision can impede information acquisition form redundantly colour‐Coded video displays , 1988, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.
[13] S. Karplus,et al. ‘Foveal Tritanopia’ , 1947, Nature.
[14] T. Wiesel,et al. Functional architecture of macaque monkey visual cortex , 1977 .
[15] DH Hubel,et al. Psychophysical evidence for separate channels for the perception of form, color, movement, and depth , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.
[16] R. Shapley,et al. Spatial summation and contrast sensitivity of X and Y cells in the lateral geniculate nucleus of the macaque , 1981, Nature.
[17] D. G. Green,et al. Optical and retinal factors affecting visual resolution. , 1965, The Journal of physiology.
[18] Vaegan,et al. CLINICAL AND EXPERIMENTAL EVIDENCE THAT THE PATTERN ELECTRORETINOGRAM (PERG) IS GENERATED IN MORE PROXIMAL RETINAL LAYERS THAN THE FOCAL ELECTRORETINOGRAM (FERG) , 1980, Annals of the New York Academy of Sciences.
[19] F. de Monasterio,et al. Properties of concentrically organized X and Y ganglion cells of macaque retina. , 1978, Journal of neurophysiology.
[20] F. M. D. Monasterio. Center and surround mechanisms of opponent-color X and Y ganglion cells of retina of macaques. , 1978 .
[21] P. Gouras,et al. Responses of cells in foveal visual cortex of the monkey to pure color contrast. , 1979, Journal of neurophysiology.
[22] D. Hubel,et al. Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.
[23] W. Dawson,et al. Human pattern-evoked retinal responses are altered by optic atrophy. , 1982, Investigative ophthalmology & visual science.
[24] K. Kawasaki,et al. [Negative wave in human pattern ERG and its suppression in glaucoma]. , 1986, Nippon Ganka Gakkai zasshi.
[25] J. Kulikowski,et al. Proceedings: Human averaged occipital potentials evoked by pattern and movement. , 1974, The Journal of physiology.
[26] P. Gouras. Identification of cone mechanisms in monkey ganglion cells , 1968, The Journal of physiology.
[27] R. Shapley,et al. Cat and monkey retinal ganglion cells and their visual functional roles , 1986, Trends in Neurosciences.
[28] P. Lennie,et al. Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.
[29] D. Hubel,et al. Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. , 1966, Journal of neurophysiology.
[30] P Gouras,et al. Antidromic responses of orthodromically identified ganglion cells in monkey retina , 1969, The Journal of physiology.
[31] F M de Monasterio,et al. Center and surround mechanisms of opponent-color X and Y ganglion cells of retina of macaques. , 1978, Journal of neurophysiology.
[32] DH Hubel,et al. Segregation of form, color, and stereopsis in primate area 18 , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.
[33] C. Baker,et al. Human pattern-evoked electroretinogram. , 1984, Journal of neurophysiology.
[34] D. Hubel,et al. Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.
[35] Vaegan,et al. Electroretinograms evoked in man by local uniform or patterned stimulation , 1983, The Journal of physiology.
[36] D H Hubel,et al. Connections between layer 4B of area 17 and the thick cytochrome oxidase stripes of area 18 in the squirrel monkey , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.
[37] N. Drasdo. Cortical potentials evoked by pattern presentation in the foveal region , 1980 .
[38] P Gouras,et al. Enchancement of luminance flicker by color-opponent mechanisms. , 1979, Science.
[39] D. Regan. Evoked potentials specific to spatial patterns of luminance and colour. , 1973, Vision research.