Complementarity in Classical Dynamical Systems

The concept of complementarity, originally defined for non-commuting observables of quantum systems with states of non-vanishing dispersion, is extended to classical dynamical systems with a partitioned phase space. Interpreting partitions in terms of ensembles of epistemic states (symbols) with corresponding classical observables, it is shown that such observables are complementary to each other with respect to particular partitions unless those partitions are generating. This explains why symbolic descriptions based on an ad hoc partition of an underlying phase space description should generally be expected to be incompatible. Related approaches with different background and different objectives are discussed.

[1]  B. McMillan The Basic Theorems of Information Theory , 1953 .

[2]  I. Antoniou,et al.  Generalized spectral decompositions of mixing dynamical systems , 1993 .

[3]  Karl Gustafson,et al.  Canonical commutation relations of quantum mechanics and stochastic regularity , 1976 .

[4]  B. O. Koopman,et al.  Dynamical Systems of Continuous Spectra. , 1932, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Masamichi Takesaki Disjointness of the KMS-states of different temperatures , 1970 .

[6]  N. Bohr Faraday lecture. Chemistry and the quantum theory of atomic constitution , 1932 .

[7]  Peter Gärdenfors,et al.  How logic emerges from the dynamics of information , 1994 .

[8]  Harald Atmanspacher,et al.  A fundamental link between system theory and statistical mechanics , 1987 .

[9]  Hans Primas,et al.  EMERGENCE IN EXACT NATURAL SCIENCES , 1998 .

[10]  R. Steuer,et al.  Entropy and optimal partition for data analysis , 2001 .

[11]  J. Jauch,et al.  CAN HIDDEN VARIABLES BE EXCLUDED IN QUANTUM MECHANICS , 1963 .

[12]  Stevan Harnad,et al.  Symbol grounding problem , 1990, Scholarpedia.

[13]  Hans Primas,et al.  Mathematical and Philosophical Questions in the Theory of Open and Macroscopic Quantum Systems , 1990 .

[14]  Harald Atmanspacher,et al.  Contextual Emergence in the Description of Properties , 2006 .

[15]  H.Atmanspacher,et al.  Weak Quantum Theory: Complementarity and Entanglement in Physics and Beyond , 2001, quant-ph/0104109.

[16]  S. Sakai C*-Algebras and W*-Algebras , 1971 .

[17]  Lai,et al.  Estimating generating partitions of chaotic systems by unstable periodic orbits , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  Harald Atmanspacher,et al.  Epistemic and Ontic Quantum Realities , 2003 .

[19]  Christiansen,et al.  Generating partition for the standard map. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  Navot Israeli,et al.  Computational irreducibility and the predictability of complex physical systems. , 2003, Physical review letters.

[21]  J. D. Saddy,et al.  Symbolic dynamics of event-related brain potentials. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  C. Finney,et al.  A review of symbolic analysis of experimental data , 2003 .

[23]  James Douglas Saddy,et al.  Language Processing by Dynamical Systems , 2004, Int. J. Bifurc. Chaos.

[24]  境 正一郎 C[*]-algebras and W[*]-algebras , 1973 .

[25]  C. Moore,et al.  What Is a Macrostate? Subjective Observations and Objective Dynamics , 2003, cond-mat/0303625.

[26]  R. Spekkens Evidence for the epistemic view of quantum states: A toy theory , 2004, quant-ph/0401052.

[27]  Y. Lai,et al.  What symbolic dynamics do we get with a misplaced partition? On the validity of threshold crossings analysis of chaotic time-series , 2001 .

[28]  H. Atmanspacher,et al.  Weak Quantum Theory: Complementarity and Entanglement in Physics and Beyond , 2001 .

[29]  H. Primas,et al.  Theory reduction and non-Boolean theories , 1977, Journal of mathematical biology.

[30]  B. Misra When can hidden variables be excluded in quantum mechanics? , 1967 .

[31]  P. Tuyls,et al.  An Algebraic Approach to the Kolmogorov-Sinai Entropy , 1996 .

[32]  Schumacher,et al.  Non-Boolean derived logics for classical systems. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[33]  M. Mackey,et al.  Probabilistic properties of deterministic systems , 1985, Acta Applicandae Mathematicae.

[34]  B. O. Koopman,et al.  Hamiltonian Systems and Transformation in Hilbert Space. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[35]  B. Misra,et al.  Nonequilibrium entropy, Lyapounov variables, and ergodic properties of classical systems. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[36]  A “quantal” Hilbert space formulation for nonlinear dynamical systems in terms of probability amplitudes , 1992 .

[37]  James P. Crutchfield,et al.  Computational Mechanics: Pattern and Prediction, Structure and Simplicity , 1999, ArXiv.

[38]  Matthew B Kennel,et al.  Estimating good discrete partitions from observed data: symbolic false nearest neighbors. , 2003, Physical review letters.

[39]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[40]  Rudolf Haag,et al.  Local quantum physics : fields, particles, algebras , 1993 .

[41]  Linearization transformations for non-linear dynamical systems: Hilbert space approach , 1992 .

[42]  Hans Primas,et al.  Emergence in exact natural science , 1998 .

[43]  G. A. Raggio,et al.  Coherence and incompatability inWu* -algebraic quantum theory , 1983 .

[44]  R. Adler,et al.  Entropy, a complete metric invariant for automorphisms of the torus. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[45]  N. Badnell,et al.  Observation of trielectronic recombination in Be-like Cl ions. , 2003, Physical review letters.

[46]  P. Grassberger,et al.  Generating partitions for the dissipative Hénon map , 1985 .

[47]  The Problem of Measurement in Quantum Mechanics , 1992 .

[48]  Lai,et al.  Validity of threshold-crossing analysis of symbolic dynamics from chaotic time series , 2000, Physical review letters.

[49]  Peter beim Graben Incompatible Implementations of Physical Symbol Systems , 2004 .

[50]  A. E. Allahverdyan,et al.  Brownian Entanglement , 2004 .

[51]  Katharina Wittfeld,et al.  Distances of Time Series Components by Means of Symbolic Dynamics , 2004, Int. J. Bifurc. Chaos.

[52]  N. Packard,et al.  Symbolic dynamics of noisy chaos , 1983 .

[53]  Hans Primas,et al.  Induced Nonlinear Time Evolution of Open Quantum Objects , 1990 .

[54]  D. TjØstheim,et al.  A Commutation Relation for Wide Sense Stationary Processes , 1976 .