Presenting the ECO: Evolutionary Computation Ontology

A well-established notion in Evolutionary Computation (EC) is the importance of the balance between exploration and exploitation. Data structures (e.g. for solution encoding), evolutionary operators, selection and fitness evaluation facilitate this balance. Furthermore, the ability of an Evolutionary Algorithm (EA) to provide efficient solutions typically depends on the specific type of problem. In order to obtain the most efficient search, it is often needed to incorporate any available knowledge (both at algorithmic and domain level) into the EA. In this work, we develop an ontology to formally represent knowledge in EAs. Our approach makes use of knowledge in the EC literature, and can be used for suggesting efficient strategies for solving problems by means of EC. We call our ontology “Evolutionary Computation Ontology” (ECO). In this contribution, we show one possible use of it, i.e. to establish a link between algorithm settings and problem types. We also show that the ECO can be used as an alternative to the available parameter selection methods and as a supporting tool for algorithmic design.

[1]  Ritu Gupta,et al.  Statistical exploratory analysis of genetic algorithms , 2004, IEEE Transactions on Evolutionary Computation.

[2]  Piero P. Bonissone,et al.  Evolutionary algorithms + domain knowledge = real-world evolutionary computation , 2006, IEEE Transactions on Evolutionary Computation.

[3]  Jeff Z. Pan,et al.  Resource Description Framework , 2020, Definitions.

[4]  Marjan Mernik,et al.  Exploration and exploitation in evolutionary algorithms: A survey , 2013, CSUR.

[5]  Rosalía Laza,et al.  Automatic parameter tuning for Evolutionary Algorithms using a Bayesian Case-Based Reasoning system , 2014, Appl. Soft Comput..

[6]  Yaochu Jin,et al.  Knowledge incorporation in evolutionary computation , 2005 .

[7]  Ivo F. Sbalzarini,et al.  Towards an FCA-based Recommender System for Black-Box Optimization , 2014, ECAI 2014.

[8]  Dirk Sudholt,et al.  When do evolutionary algorithms optimize separable functions in parallel? , 2013, FOGA XII '13.

[9]  Sushil J. Louis,et al.  Case-Initialized Genetic Algorithms for Knowledge Extraction and Incorporation , 2005 .

[10]  Ponnuthurai N. Suganthan,et al.  Super-fit and population size reduction in compact Differential Evolution , 2011, 2011 IEEE Workshop on Memetic Computing (MC).

[11]  Jing J. Liang,et al.  Problem Deflnitions and Evaluation Criteria for the CEC 2006 Special Session on Constrained Real-Parameter Optimization , 2006 .

[12]  Mirina Grosz,et al.  World Wide Web Consortium , 2010 .

[13]  Alex S. Fukunaga,et al.  Improving the search performance of SHADE using linear population size reduction , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[14]  Peter Szolovits,et al.  What Is a Knowledge Representation? , 1993, AI Mag..

[15]  Gurpreet Kaur,et al.  Evolutionary computation ontology: E-learning system , 2015, INFOCOM 2015.

[16]  Domagoj Jakobovic,et al.  From fitness landscape to crossover operator choice , 2014, GECCO.

[17]  Kenneth A. De Jong,et al.  A formal analysis of the role of multi-point crossover in genetic algorithms , 1992, Annals of Mathematics and Artificial Intelligence.

[18]  Zbigniew Michalewicz,et al.  Parameter control in evolutionary algorithms , 1999, IEEE Trans. Evol. Comput..

[19]  Ulf Leser,et al.  Querying Distributed RDF Data Sources with SPARQL , 2008, ESWC.

[20]  Shu-Hsien Liao,et al.  Expert system methodologies and applications - a decade review from 1995 to 2004 , 2005, Expert Syst. Appl..

[21]  A. E. Eiben,et al.  Parameter tuning for configuring and analyzing evolutionary algorithms , 2011, Swarm Evol. Comput..

[22]  Hideyuki Takagi,et al.  Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation , 2001, Proc. IEEE.

[23]  Lishan Kang,et al.  On the Convergence Rates of Genetic Algorithms , 1999, Theor. Comput. Sci..

[24]  Stephan M. Winkler,et al.  Architecture and Design of the HeuristicLab Optimization Environment , 2014 .

[25]  Ivanoe De Falco,et al.  Mutation-based genetic algorithm: performance evaluation , 2002, Appl. Soft Comput..

[26]  Michael Affenzeller,et al.  Parameter Meta-optimization of Metaheuristic Optimization Algorithms , 2011, EUROCAST.

[27]  Thomas R. Gruber,et al.  A translation approach to portable ontology specifications , 1993, Knowl. Acquis..

[28]  G. Lamont,et al.  Simple genetic algorithm parameter selection for protein structure prediction , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[29]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[30]  John F. Sowa,et al.  Principles of semantic networks , 1991 .

[31]  Jun Zhang,et al.  Fuzzy Knowledge Incorporation in Crossover and Mutation , 2005 .

[32]  Oscar Corcho,et al.  an Introduction to Ontologies and Ontology Engineering , 2011 .

[33]  David Riaño,et al.  An ontology-based personalization of health-care knowledge to support clinical decisions for chronically ill patients , 2012, J. Biomed. Informatics.

[34]  N. F. Noy,et al.  Ontology Development 101: A Guide to Creating Your First Ontology , 2001 .

[35]  Thomas Bäck,et al.  Selective Pressure in Evolutionary Algorithms: A Characterization of Selection Mechanisms , 1994, International Conference on Evolutionary Computation.

[36]  Dieter Fensel,et al.  Knowledge Engineering: Principles and Methods , 1998, Data Knowl. Eng..

[37]  Heinz Mühlenbein,et al.  How Genetic Algorithms Really Work: Mutation and Hillclimbing , 1992, PPSN.