THE DEBRIS DISK AROUND γ DORADUS RESOLVED WITH HERSCHEL

We present observations of the debris disk around γ Doradus, an F1V star, from the Herschel Key Programme DEBRIS (Disc Emission via Bias-free Reconnaissance in the Infrared/Submillimetre). The disk is well resolved at 70, 100, and 160 μm, resolved along its major axis at 250 μm, detected but not resolved at 350 μm, and confused with a background source at 500 μm. It is one of our best resolved targets and we find it to have a radially broad dust distribution. The modeling of the resolved images cannot distinguish between two configurations: an arrangement of a warm inner ring at several AU (best fit 4 AU) and a cool outer belt extending from ∼55 to 400 AU or an arrangement of two cool, narrow rings at ∼70 AU and ∼190 AU. This suggests that any configuration between these two is also possible. Both models have a total fractional luminosity of ∼10−5 and are consistent with the disk being aligned with the stellar equator. The inner edge of either possible configuration suggests that the most likely region to find planets in this system would be within ∼55 AU of the star. A transient event is not needed to explain the warm dust's fractional luminosity.

[1]  G. Rieke,et al.  Herschel imaging of 61 Vir: implications for the prevalence of debris in low-mass planetary systems , 2012, 1206.2370.

[2]  L. Vican,et al.  AGE DETERMINATION FOR 346 NEARBY STARS IN THE HERSCHEL DEBRIS SURVEY , 2012, 1203.1966.

[3]  P. Kalas,et al.  99 Herculis: host to a circumbinary polar‐ring debris disc , 2012, 1201.1911.

[4]  J. Augereau,et al.  An icy Kuiper-Belt around the young solar-type star HD 181327 , 2011, 1112.3398.

[5]  B. Zuckerman,et al.  BINARIES AMONG DEBRIS DISK STARS , 2011, 1111.5618.

[6]  M. Wyatt,et al.  Dependence of a planet's chaotic zone on particle eccentricity: the shape of debris disc inner edges , 2011, 1110.1282.

[7]  S. Wolf,et al.  Multi-wavelength modeling of the spatially resolved debris disk of HD 107146 , 2011, 1107.1057.

[8]  Christopher C. Stark,et al.  The cold origin of the warm dust around ε Eridani , 2010, 1011.4882.

[9]  D. Bayliss,et al.  STRUCTURE AND EVOLUTION OF DEBRIS DISKS AROUND F-TYPE STARS. I. OBSERVATIONS, DATABASE, AND BASIC EVOLUTIONARY ASPECTS , 2010, 1012.3631.

[10]  J. Rho,et al.  THE SPITZER ATLAS OF STELLAR SPECTRA (SASS) , 2010 .

[11]  Mathias Tecza,et al.  The Gemini NICI Planet-Finding Campaign , 2010, Astronomical Telescopes + Instrumentation.

[12]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[13]  Grant Kennedy,et al.  Resolving debris discs in the far-infrared: Early highlights from the DEBRIS survey , 2010, 1005.5147.

[14]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[15]  A. Brandeker,et al.  The Vega debris disc: A view from Herschel , 2010, 1005.3543.

[16]  G. Rieke,et al.  LOCATING PLANETESIMAL BELTS IN THE MULTIPLE-PLANET SYSTEMS HD 128311, HD 202206, HD 82943, AND HR 8799 , 2010, 1005.2971.

[17]  Munetaka Ueno,et al.  The AKARI/IRC mid-infrared all-sky survey , 2010, 1003.0270.

[18]  David E. Trilling,et al.  NEW DEBRIS DISK CANDIDATES AROUND 49 NEARBY STARS , 2010 .

[19]  M. C. Wyatt,et al.  Target selection for the SUNS and DEBRIS surveys for debris discs in the solar neighbourhood , 2009, 0911.3426.

[20]  David E. Trilling,et al.  PLANETS AND DEBRIS DISKS: RESULTS FROM A SPITZER/MIPS SEARCH FOR INFRARED EXCESS , 2009 .

[21]  J. Rho,et al.  SpS1-The Spitzer atlas of stellar spectra , 2009, Proceedings of the International Astronomical Union.

[22]  K. Y. L. Su,et al.  ACCEPTED FOR PUBLICATION IN APJ. Preprint typeset using LATEX style emulateapj v. 2/19/04 THE DEBRIS DISK AROUND HR 8799 , 2022 .

[23]  Cambridge,et al.  Debris disc stirring by secular perturbations from giant planets , 2009, 0907.1389.

[24]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[25]  UK,et al.  The history of the Solar system's debris disc: observable properties of the Kuiper belt , 2009, 0906.3755.

[26]  S. Wolf,et al.  Long-wavelength observations of debris discs around sun-like stars , 2009, 0902.0338.

[27]  Mark Clampin,et al.  Optical Images of an Exosolar Planet 25 Light-Years from Earth , 2008, Science.

[28]  K. Stapelfeldt,et al.  EPSILON ERIDANI'S PLANETARY DEBRIS DISK: STRUCTURE AND DYNAMICS BASED ON SPITZER AND CALTECH SUBMILLIMETER OBSERVATORY OBSERVATIONS , 2008, 0810.4564.

[29]  M. Wyatt,et al.  Evolution of Debris Disks , 2008 .

[30]  Francois Rigaut,et al.  Performance of the near-infrared coronagraphic imager on Gemini-South , 2008, Astronomical Telescopes + Instrumentation.

[31]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[32]  F. V. Leeuwen Validation of the new Hipparcos reduction , 2007, 0708.1752.

[33]  R. Smith,et al.  Transience of Hot Dust around Sun-like Stars , 2006, astro-ph/0610102.

[34]  M. McElwain,et al.  Characterization of Dusty Debris Disks: The IRAS and Hipparcos Catalogs , 2006, astro-ph/0609555.

[35]  Jean-Luc Starck,et al.  Astronomical Data Analysis , 2007 .

[36]  C. Packham,et al.  Mid-Infrared Resolution of a 3 AU Radius Debris Disk around ζ Leporis , 2006, astro-ph/0612550.

[37]  et al,et al.  New Debris Disks around Nearby Main-Sequence Stars: Impact on the Direct Detection of Planets , 2006, astro-ph/0611682.

[38]  S. Wolf,et al.  # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. DISCOVERY OF AN 86 AU RADIUS DEBRIS RING AROUND HD 181327 , 2005 .

[39]  Alice C. Quillen,et al.  Predictions for a planet just inside Fomalhaut's eccentric ring , 2006, astro-ph/0605372.

[40]  K. H. Kim,et al.  Spitzer IRS Spectroscopy of IRAS-discovered Debris Disks , 2006, astro-ph/0605277.

[41]  Mark Clampin,et al.  A planetary system as the origin of structure in Fomalhaut's dust belt , 2005, Nature.

[42]  G. Rieke,et al.  The Vega Debris Disk: A Surprise from Spitzer , 2005, astro-ph/0504086.

[43]  David E. Trilling,et al.  Decay of Planetary Debris Disks , 2005 .

[44]  J. Greaves,et al.  Submillimeter Images of a Dusty Kuiper Belt around η Corvi , 2004, astro-ph/0411061.

[45]  M. Perryman,et al.  The Three-Dimensional Universe with Gaia , 2005 .

[46]  H. Ford,et al.  A Resolved Debris Disk around the G2 V Star HD 107146 , 2004, astro-ph/0411422.

[47]  S. Kenyon,et al.  Collisional Cascades in Planetesimal Disks. II. Embedded Planets , 2003, astro-ph/0309540.

[48]  S. Weidenschilling Radial drift of particles in the solar nebula: implications for planetesimal formation , 2003 .

[49]  M. Wyatt,et al.  Resonant Trapping of Planetesimals by Planet Migration: Debris Disk Clumps and Vega’s Similarity to the Solar System , 2003, astro-ph/0308253.

[50]  Wm. A. Wheaton,et al.  2MASS All Sky Catalog of point sources. , 2003 .

[51]  H. Walker,et al.  Models of the dust structures around Vega-excess stars , 2000 .

[52]  Mullard Space Science Laboratory,et al.  A Dust Ring around epsilon Eridani: Analog to the Young Solar System , 1998, astro-ph/9808224.

[53]  B. Zuckerman,et al.  Submillimetre images of dusty debris around nearby stars , 1998, Nature.

[54]  S. D. James,et al.  Line profile variations in $\gamma$ Doradus , 1996, astro-ph/9603041.

[55]  E. D. Hoffleit,et al.  The general catalogue of trigonometric [stellar] parallaxes , 1995 .

[56]  L. A. Balona,et al.  γ Doradus: evidence for a new class of pulsating star , 1994 .

[57]  M. M. Moshir,et al.  IRAS Faint Source Catalogue, version 2.0. , 1990 .

[58]  H. H. Aumann,et al.  IRAS OBSERVATIONS OF MATTER AROUND NEARBY STARS. , 1985 .

[59]  F. J. Low,et al.  DISCOVERY OF A SHELL AROUND ALPHA-LYRAE , 1984 .