Inflation in random landscapes with two energy scales
暂无分享,去创建一个
[1] M. C. Marsh,et al. Seven lessons from manyfield inflation in random potentials , 2017, 1706.03774.
[2] A. Vilenkin,et al. Hessian eigenvalue distribution in a random Gaussian landscape , 2017, Journal of High Energy Physics.
[3] M. Kleban,et al. Systematics of aligned axions , 2017, 1709.01080.
[4] A. Vilenkin,et al. Inflation in multi-field random Gaussian landscapes , 2017, 1707.03520.
[5] A. Vilenkin,et al. Initial conditions for slow-roll inflation in a random Gaussian landscape , 2017, 1704.06994.
[6] Andrei Linde. Random potentials and cosmological attractors , 2016, 1612.04505.
[7] A. Vilenkin,et al. Inflation in random Gaussian landscapes , 2016, 1612.03960.
[8] A. Westphal,et al. Inflation with a graceful exit in a random landscape , 2016, 1611.07059.
[9] K. Olum,et al. Efficient numerical solution to vacuum decay with many fields , 2016, 1610.06594.
[10] Thomas C. Bachlechner. Inflation expels runaways , 2016, 1608.07576.
[11] T. Battefeld,et al. Random functions via Dyson Brownian Motion: progress and problems , 2016, 1607.02514.
[12] M. C. Marsh,et al. Simple Emergent Power Spectra from Complex Inflationary Physics. , 2016, Physical review letters.
[13] A. Vilenkin,et al. Vacuum statistics and stability in axionic landscapes , 2016, 1601.01662.
[14] M. C. Marsh,et al. Universal properties of type IIB and F-theory flux compactifications at large complex structure , 2015, 1512.08549.
[15] T. Battefeld,et al. Vacuum selection on axionic landscapes , 2015, 1512.04224.
[16] Callum R. Brodie,et al. The spectra of type IIB flux compactifications at large complex structure , 2015, 1509.06761.
[17] T. Piran,et al. Possible role of gamma ray bursts on life extinction in the universe. , 2014, Physical review letters.
[18] Thomas C. Bachlechner. On Gaussian random supergravity , 2014, 1401.6187.
[19] A. Vilenkin. A quantum measure of the multiverse , 2013, 1312.0682.
[20] A. Vilenkin,et al. Non-singular bounce transitions in the multiverse , 2013, 1309.2847.
[21] Liam McAllister,et al. Charting an Inflationary Landscape with Random Matrix Theory , 2013, 1307.3559.
[22] Dhagash Mehta,et al. Finding all flux vacua in an explicit example , 2012, 1212.4530.
[23] A. Vilenkin,et al. Watchers of the multiverse , 2012, 1210.7540.
[24] J. Blanco-Pillado,et al. Accidental Inflation in the Landscape , 2012, 1209.0796.
[25] K. Metallinos. Numerical exploration of the string theory landscape , 2013 .
[26] G. B. Arous,et al. Complexity of random energy landscapes , 2013 .
[27] I-Sheng Yang. Probability of Slowroll Inflation in the Multiverse , 2012, 1208.3821.
[28] T. Battefeld,et al. On the Unlikeliness of Multi-Field Inflation: Bounded Random Potentials and our Vacuum , 2012, 1203.3941.
[29] Ben Freivogel. Making predictions in the multiverse , 2011, 1105.0244.
[30] R. Bean,et al. Universality in D-brane inflation , 2011, 1103.2775.
[31] A. Liddle,et al. Exploring a string-like landscape , 2011, 1101.1619.
[32] A. Simone,et al. Boltzmann brains and the scale-factor cutoff measure of the multiverse , 2008, 0808.3778.
[33] M. Serone,et al. An effective description of the landscape — I , 2008, 0812.0369.
[34] R. Bousso,et al. Properties of the scale factor measure , 2008, 0808.3770.
[35] A. Simone,et al. Predicting the cosmological constant with the scale-factor cutoff measure , 2008, 0805.2173.
[36] Andrei Linde,et al. Accidental inflation in string theory , 2007, 0712.1610.
[37] I. Klebanov,et al. Towards an explicit model of D-brane inflation , 2007, 0706.0360.
[38] A. Bray,et al. Statistics of critical points of Gaussian fields on large-dimensional spaces. , 2006, Physical review letters.
[39] Michael R. Douglas,et al. Flux Compactification , 2006, hep-th/0610102.
[40] Richard Easther,et al. Cosmology from random multifield potentials , 2005, hep-th/0512050.
[41] F. Wilczek,et al. Dimensionless constants, cosmology and other dark matters , 2005, astro-ph/0511774.
[42] A. Vilenkin,et al. Probabilities in the inflationary multiverse , 2005, hep-th/0509184.
[43] G. Dvali. Large hierarchies from attractor vacua , 2004, hep-th/0410286.
[44] L. Susskind,et al. Observational consequences of a landscape , 2005, hep-th/0505232.
[45] K. Suruliz,et al. Large-volume flux compactifications: Moduli spectrum and D3/D7 soft supersymmetry breaking , 2005, hep-th/0505076.
[46] Max Tegmark,et al. What does inflation really predict? , 2004, astro-ph/0410281.
[47] Y. Fyodorov. Complexity of random energy landscapes, glass transition, and absolute value of the spectral determinant of random matrices. , 2004, Physical review letters.
[48] A. Vilenkin,et al. Testable anthropic predictions for dark energy , 2002, astro-ph/0210358.
[49] A. Vilenkin,et al. Field theory models for variable cosmological constant , 2001, hep-th/0102142.
[50] R. Bousso,et al. Quantization of four-form fluxes and dynamical neutralization of the cosmological constant , 2000, hep-th/0004134.
[51] A. Vilenkin,et al. On likely values of the cosmological constant , 1999, astro-ph/9908115.
[52] A. Goodman. Recycling in the Universe , 2000 .
[53] M. Livio,et al. Cosmological constant and the time of its dominance , 1999, astro-ph/9906210.
[54] M. Rees,et al. Why Is the Cosmic Microwave Background Fluctuation Level 10−5? , 1998 .
[55] A. Vilenkin,et al. Probability distribution for omega in open universe inflation , 1996, astro-ph/9605191.
[56] Andrei Linde,et al. From the big bang theory to the theory of a stationary universe. , 1993, Physical review. D, Particles and fields.
[57] Andrei Linde,et al. Stationary Universe , 1993, gr-qc/9304015.
[58] Weinberg,et al. Anthropic bound on the cosmological constant. , 1987, Physical review letters.
[59] M. Dine,et al. Is the superstring weakly coupled , 1985 .
[60] I. Antoniadis,et al. On the cosmological constant problem , 1984 .
[61] Alexander Vilenkin,et al. Birth of inflationary universes , 1983 .