Inflation in random landscapes with two energy scales

[1]  M. C. Marsh,et al.  Seven lessons from manyfield inflation in random potentials , 2017, 1706.03774.

[2]  A. Vilenkin,et al.  Hessian eigenvalue distribution in a random Gaussian landscape , 2017, Journal of High Energy Physics.

[3]  M. Kleban,et al.  Systematics of aligned axions , 2017, 1709.01080.

[4]  A. Vilenkin,et al.  Inflation in multi-field random Gaussian landscapes , 2017, 1707.03520.

[5]  A. Vilenkin,et al.  Initial conditions for slow-roll inflation in a random Gaussian landscape , 2017, 1704.06994.

[6]  Andrei Linde Random potentials and cosmological attractors , 2016, 1612.04505.

[7]  A. Vilenkin,et al.  Inflation in random Gaussian landscapes , 2016, 1612.03960.

[8]  A. Westphal,et al.  Inflation with a graceful exit in a random landscape , 2016, 1611.07059.

[9]  K. Olum,et al.  Efficient numerical solution to vacuum decay with many fields , 2016, 1610.06594.

[10]  Thomas C. Bachlechner Inflation expels runaways , 2016, 1608.07576.

[11]  T. Battefeld,et al.  Random functions via Dyson Brownian Motion: progress and problems , 2016, 1607.02514.

[12]  M. C. Marsh,et al.  Simple Emergent Power Spectra from Complex Inflationary Physics. , 2016, Physical review letters.

[13]  A. Vilenkin,et al.  Vacuum statistics and stability in axionic landscapes , 2016, 1601.01662.

[14]  M. C. Marsh,et al.  Universal properties of type IIB and F-theory flux compactifications at large complex structure , 2015, 1512.08549.

[15]  T. Battefeld,et al.  Vacuum selection on axionic landscapes , 2015, 1512.04224.

[16]  Callum R. Brodie,et al.  The spectra of type IIB flux compactifications at large complex structure , 2015, 1509.06761.

[17]  T. Piran,et al.  Possible role of gamma ray bursts on life extinction in the universe. , 2014, Physical review letters.

[18]  Thomas C. Bachlechner On Gaussian random supergravity , 2014, 1401.6187.

[19]  A. Vilenkin A quantum measure of the multiverse , 2013, 1312.0682.

[20]  A. Vilenkin,et al.  Non-singular bounce transitions in the multiverse , 2013, 1309.2847.

[21]  Liam McAllister,et al.  Charting an Inflationary Landscape with Random Matrix Theory , 2013, 1307.3559.

[22]  Dhagash Mehta,et al.  Finding all flux vacua in an explicit example , 2012, 1212.4530.

[23]  A. Vilenkin,et al.  Watchers of the multiverse , 2012, 1210.7540.

[24]  J. Blanco-Pillado,et al.  Accidental Inflation in the Landscape , 2012, 1209.0796.

[25]  K. Metallinos Numerical exploration of the string theory landscape , 2013 .

[26]  G. B. Arous,et al.  Complexity of random energy landscapes , 2013 .

[27]  I-Sheng Yang Probability of Slowroll Inflation in the Multiverse , 2012, 1208.3821.

[28]  T. Battefeld,et al.  On the Unlikeliness of Multi-Field Inflation: Bounded Random Potentials and our Vacuum , 2012, 1203.3941.

[29]  Ben Freivogel Making predictions in the multiverse , 2011, 1105.0244.

[30]  R. Bean,et al.  Universality in D-brane inflation , 2011, 1103.2775.

[31]  A. Liddle,et al.  Exploring a string-like landscape , 2011, 1101.1619.

[32]  A. Simone,et al.  Boltzmann brains and the scale-factor cutoff measure of the multiverse , 2008, 0808.3778.

[33]  M. Serone,et al.  An effective description of the landscape — I , 2008, 0812.0369.

[34]  R. Bousso,et al.  Properties of the scale factor measure , 2008, 0808.3770.

[35]  A. Simone,et al.  Predicting the cosmological constant with the scale-factor cutoff measure , 2008, 0805.2173.

[36]  Andrei Linde,et al.  Accidental inflation in string theory , 2007, 0712.1610.

[37]  I. Klebanov,et al.  Towards an explicit model of D-brane inflation , 2007, 0706.0360.

[38]  A. Bray,et al.  Statistics of critical points of Gaussian fields on large-dimensional spaces. , 2006, Physical review letters.

[39]  Michael R. Douglas,et al.  Flux Compactification , 2006, hep-th/0610102.

[40]  Richard Easther,et al.  Cosmology from random multifield potentials , 2005, hep-th/0512050.

[41]  F. Wilczek,et al.  Dimensionless constants, cosmology and other dark matters , 2005, astro-ph/0511774.

[42]  A. Vilenkin,et al.  Probabilities in the inflationary multiverse , 2005, hep-th/0509184.

[43]  G. Dvali Large hierarchies from attractor vacua , 2004, hep-th/0410286.

[44]  L. Susskind,et al.  Observational consequences of a landscape , 2005, hep-th/0505232.

[45]  K. Suruliz,et al.  Large-volume flux compactifications: Moduli spectrum and D3/D7 soft supersymmetry breaking , 2005, hep-th/0505076.

[46]  Max Tegmark,et al.  What does inflation really predict? , 2004, astro-ph/0410281.

[47]  Y. Fyodorov Complexity of random energy landscapes, glass transition, and absolute value of the spectral determinant of random matrices. , 2004, Physical review letters.

[48]  A. Vilenkin,et al.  Testable anthropic predictions for dark energy , 2002, astro-ph/0210358.

[49]  A. Vilenkin,et al.  Field theory models for variable cosmological constant , 2001, hep-th/0102142.

[50]  R. Bousso,et al.  Quantization of four-form fluxes and dynamical neutralization of the cosmological constant , 2000, hep-th/0004134.

[51]  A. Vilenkin,et al.  On likely values of the cosmological constant , 1999, astro-ph/9908115.

[52]  A. Goodman Recycling in the Universe , 2000 .

[53]  M. Livio,et al.  Cosmological constant and the time of its dominance , 1999, astro-ph/9906210.

[54]  M. Rees,et al.  Why Is the Cosmic Microwave Background Fluctuation Level 10−5? , 1998 .

[55]  A. Vilenkin,et al.  Probability distribution for omega in open universe inflation , 1996, astro-ph/9605191.

[56]  Andrei Linde,et al.  From the big bang theory to the theory of a stationary universe. , 1993, Physical review. D, Particles and fields.

[57]  Andrei Linde,et al.  Stationary Universe , 1993, gr-qc/9304015.

[58]  Weinberg,et al.  Anthropic bound on the cosmological constant. , 1987, Physical review letters.

[59]  M. Dine,et al.  Is the superstring weakly coupled , 1985 .

[60]  I. Antoniadis,et al.  On the cosmological constant problem , 1984 .

[61]  Alexander Vilenkin,et al.  Birth of inflationary universes , 1983 .