Formation and size distribution of pores in poly(ɛ-caprolactone) foams prepared by pressure quenching using supercritical CO2

[1]  Andreas Lendlein,et al.  Engineering Materials for Regenerative Medicine , 2010 .

[2]  Tao Liu,et al.  Predicting the effect of dissolved carbon dioxide on the glass transition temperature of poly(acrylic acid) , 2010 .

[3]  M. J. Cocero,et al.  Determination of Phase Equilibrium (Solid−Liquid−Gas) in Poly-(ε-caprolactone)−Carbon Dioxide Systems , 2010 .

[4]  Chul B. Park,et al.  A Study of the Crystallization, Melting, and Foaming Behaviors of Polylactic Acid in Compressed CO2 , 2009, International journal of molecular sciences.

[5]  W. Thielemans,et al.  Synthesis of polycaprolactone: a review. , 2009, Chemical Society reviews.

[6]  Andreas Lendlein,et al.  Materials in Regenerative Medicine , 2009, Advanced materials.

[7]  D. Hutmacher,et al.  The return of a forgotten polymer : Polycaprolactone in the 21st century , 2009 .

[8]  Molly M Stevens,et al.  Synthetic polymer scaffolds for tissue engineering. , 2009, Chemical Society reviews.

[9]  Marc Behl,et al.  Biodegradable multiblock copolymers based on oligodepsipeptides with shape-memory properties. , 2009, Macromolecular bioscience.

[10]  Jtf Jos Keurentjes,et al.  Sustainable polymer foaming using high pressure carbon dioxide: a review on fundamentals, processes and applications , 2008 .

[11]  Kun Liu,et al.  Morphological changes in poly(ɛ-caprolactone) in dense carbon dioxide , 2008 .

[12]  I. Sokolov,et al.  Enzymatic chain scission kinetics of poly(epsilon-caprolactone) monolayers. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[13]  N. Washburn,et al.  Material model measurements and predictions for a random pore poly(ϵ‐caprolactone) scaffold , 2007 .

[14]  Jtf Jos Keurentjes,et al.  A parametric study into the morphology of polystyrene-co-methyl methacrylate foams using supercritical carbon dioxide as a blowing agent , 2007 .

[15]  Dietmar W. Hutmacher,et al.  Biodegradable polymers applied in tissue engineering research: a review , 2007 .

[16]  Zhuoyang Lian,et al.  Carbon dioxide-induced melting point depression of biodegradable semicrystalline polymers , 2006 .

[17]  K. Shakesheff,et al.  Characterisation of microcellular foams produced from semi-crystalline PCL using supercritical carbon dioxide , 2006 .

[18]  Andreas Lendlein,et al.  Design and preparation of polymeric scaffolds for tissue engineering , 2006, Expert review of medical devices.

[19]  R. G. Fenton,et al.  Computer Simulation of Bubble-Growth Phenomena in Foaming , 2006 .

[20]  Chul B. Park,et al.  A Microcellular Foaming Simulation System with a High Pressure-Drop Rate , 2006 .

[21]  S. Bhattacharya,et al.  Mathematical modeling and numerical simulation for nucleated solution flow through slit die in foam extrusion , 2006 .

[22]  Hun-Soo Byun,et al.  Phase Behavior of the Binary and Ternary Mixtures of Biodegradable Poly(ε-caprolactone) in Supercritical Fluids , 2006 .

[23]  K. Shakesheff,et al.  Supercritical carbon dioxide: putting the fizz into biomaterials , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[24]  Wei‐Tsung Chuang,et al.  Kinetics of Phase Separation in Poly(ɛ-caprolactone)/Poly(ethylene glycol) Blends , 2005 .

[25]  Andreas Lendlein,et al.  Degradable, Multifunctional Polymeric Biomaterials with Shape-Memory , 2005 .

[26]  L. Nicolais,et al.  Structure optimization of polycaprolactone foams by using mixtures of CO2 and N2 as blowing agents , 2005 .

[27]  Giuseppe Mensitieri,et al.  Characterization of Microcellular Biodegradable Polymeric Foams Produced from Supercritical Carbon Dioxide Solutions , 2005 .

[28]  Huang Yang,et al.  Morphological changes of polycaprolactone with high-pressure CO2 treatment , 2005 .

[29]  Buddy D Ratner,et al.  Generation of porous microcellular 85/15 poly (DL-lactide-co-glycolide) foams for biomedical applications. , 2004, Biomaterials.

[30]  Eric J. Beckman,et al.  Supercritical and near-critical CO2 in green chemical synthesis and processing , 2004 .

[31]  Chul B. Park,et al.  Fundamental foaming mechanisms governing the volume expansion of extruded polypropylene foams , 2004 .

[32]  Xiangmin Han,et al.  A Review of CO2 Applications in the Processing of Polymers , 2003 .

[33]  Matthias Heuchel,et al.  Free Volume Distributions in Ultrahigh and Lower Free Volume Polymers: Comparison between Molecular Modeling and Positron Lifetime Studies , 2002 .

[34]  A. Lendlein,et al.  Hydroxy-telechelic copolyesters with well defined sequence structure through ring-opening polymerization , 2000 .

[35]  Ž. Knez,et al.  Comparison of different methods for determination of the S–L–G equilibrium curve of a solid component in the presence of a compressed gas , 2000 .

[36]  Chul B. Park,et al.  Microcellular sheet extrusion system process design models for shaping and cell growth control , 1998 .

[37]  Giulio C. Sarti,et al.  Nonequilibrium Lattice Fluids: A Predictive Model for the Solubility in Glassy Polymers , 1996 .

[38]  Chul B. Park,et al.  A microcellular processing study of poly(ethylene terephthalate) in the amorphous and semicrystalline states. Part I: Microcell nucleation , 1996 .

[39]  E. Beckman,et al.  Generation of microcellular polymeric foams using supercritical carbon dioxide. I: Effect of pressure and temperature on nucleation , 1994 .

[40]  Jonathan S. Colton,et al.  Nucleation of microcellular foam: Theory and practice , 1987 .

[41]  Isaac C. Sanchez,et al.  An elementary equation of state for polymer liquids , 1977 .

[42]  Erdogan Kiran,et al.  Polymer miscibility, phase separation, morphological modifications and polymorphic transformations in dense fluids , 2009 .

[43]  Hsin-I Chang,et al.  Characterizing Microporous PCL Matrices for Application of Tissue Engineering , 2009 .

[44]  A. Lendlein,et al.  Selective enzymatic degradation of poly(epsilon-caprolactone) containing multiblock copolymers. , 2008, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[45]  Andreas Lendlein,et al.  Formation of poly(ε-caprolactone) scaffolds loaded with small molecules by integrated processes , 2007 .

[46]  M. Ahmed,et al.  Characterization of polymeric poly(epsilon-caprolactone) injectable implant delivery system for the controlled delivery of contraceptive steroids. , 2006, Journal of biomedical materials research. Part A.

[47]  Leon P.B.M. Janssen,et al.  Supercritical carbon dioxide as a green solvent for processing polymer melts: Processing aspects and applications , 2006 .

[48]  Bülent Sankur,et al.  Survey over image thresholding techniques and quantitative performance evaluation , 2004, J. Electronic Imaging.

[49]  N. Ramesh Fundamentals of Bubble Nucleation and Growth in Polymers , 2003 .

[50]  Andrew I. Cooper,et al.  Polymer synthesis and processing using supercritical carbon dioxide , 2000 .

[51]  L. Sperling Introduction to physical polymer science , 1986 .

[52]  I. Sanchez,et al.  Statistical Thermodynamics of Polymer Solutions , 1978 .