A Guide to Stochastic Löwner Evolution and Its Applications
暂无分享,去创建一个
[1] H. Hochstadt. Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable; 3rd ed. (Lars V. Ahlfors) , 1980 .
[2] Wendelin Werner,et al. Conformal invariance of planar loop-erased random walks and uniform spanning trees , 2001 .
[3] Saleur,et al. Exact determination of the percolation hull exponent in two dimensions. , 1987, Physical review letters.
[4] Wendelin Werner,et al. Conformal Restriction, Highest-Weight Representations and SLE , 2003 .
[5] R. Baxter,et al. q colourings of the triangular lattice , 1986 .
[6] K. Reinhardt. Über schlichte konforme Abbildungen des Einheitskreises. , 2022 .
[7] L. Ahlfors. Conformal Invariants: Topics in Geometric Function Theory , 1973 .
[8] T. Kennedy. Monte Carlo tests of stochastic Loewner evolution predictions for the 2D self-avoiding walk. , 2001, Physical review letters.
[9] Eytan Domany,et al. Introduction to the renormalization group and to critical phenomena , 1977 .
[10] Bernard Nienhuis,et al. Critical behavior of two-dimensional spin models and charge asymmetry in the Coulomb gas , 1984 .
[11] O. Schramm,et al. On the scaling limit of planar self-avoiding walk , 2002, math/0204277.
[12] P. Howe,et al. Multicritical points in two dimensions, the renormalization group and the ϵ expansion , 1989 .
[13] Ali Esmaili,et al. Probability and Random Processes , 2005, Technometrics.
[14] Wendelin Werner,et al. Conformal fields, restriction properties, degenerate representations and SLE , 2002 .
[15] Continuum Nonsimple Loops and 2D Critical Percolation , 2003, math/0308122.
[16] R. Baxter. Exactly solved models in statistical mechanics , 1982 .
[17] V. Kaimanovich. An introduction to the Stochastic Loewner Evolution , 2004 .
[18] Denis Bernard,et al. SLE martingales and the Virasoro algebra , 2003 .
[19] W. Werner. Conformal restriction and related questions , 2003, math/0307353.
[20] Oded Schramm,et al. Harmonic explorer and its convergence to SLE4 , 2003 .
[21] Harmonic Measure Exponents for Two-Dimensional Percolation , 1999, cond-mat/9901008.
[22] R. Baxter,et al. Equivalence of the Potts model or Whitney polynomial with an ice-type model , 1976 .
[23] D. Bernard,et al. SLEκ growth processes and conformal field theories , 2002 .
[24] M. Abramowitz,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[25] C. Pommerenke. Boundary Behaviour of Conformal Maps , 1992 .
[26] Oded Schramm. A Percolation Formula , 2001 .
[27] Bernard Nienhuis,et al. Exact Critical Point and Critical Exponents of O ( n ) Models in Two Dimensions , 1982 .
[28] Wendelin Werner,et al. Values of Brownian intersection exponents III: Two-sided exponents , 2002 .
[29] C. Gardiner. Handbook of Stochastic Methods , 1983 .
[30] G. Lawler. Hausdorff Dimension of Cut Points for Brownian Motion , 1996 .
[31] LETTER TO THE EDITOR: Stochastic Loewner evolution and Dyson's circular ensembles , 2003, math-ph/0301039.
[32] C. Itzykson,et al. Conformal Invariance , 1987 .
[33] Shang‐keng Ma. Modern Theory of Critical Phenomena , 1976 .
[34] Duplantier. Conformally invariant fractals and potential theory , 2000, Physical review letters.
[35] B. Nienhuis. Locus of the tricritical transition in a two-dimensional q-state Potts model , 1991 .
[36] K. Vahala. Handbook of stochastic methods for physics, chemistry and the natural sciences , 1986, IEEE Journal of Quantum Electronics.
[37] Wendelin Werner,et al. One-Arm Exponent for Critical 2D Percolation , 2001 .
[38] Conformal invariance and intersections of random walks. , 1988, Physical review letters.
[39] Wendelin Werner,et al. CRITICAL EXPONENTS FOR TWO-DIMENSIONAL PERCOLATION , 2001 .
[40] G. Grimmett,et al. Probability and random processes , 2002 .
[41] Oded Schramm,et al. Basic properties of SLE , 2001 .
[42] Oded Schramm,et al. Scaling limits of loop-erased random walks and uniform spanning trees , 1999, math/9904022.
[43] Wendelin Werner. Random planar curves and Schramm-Loewner evolutions , 2003 .
[44] O. Schramm,et al. Conformal restriction: The chordal case , 2002, math/0209343.
[45] S. Smirnov. Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits , 2001 .
[46] Karl Löwner. Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I , 1923 .
[47] Conformal Invariance and Stochastic Loewner Evolution Predictions for the 2D Self-Avoiding Walk—Monte Carlo Tests , 2002, math/0207231.
[48] Vincent Beffara. Hausdorff dimensions for SLE6 , 2004 .
[49] G. Lawler,et al. Intersection Exponents for Planar Brownian Motion , 1999 .
[50] John Cardy. Critical percolation in finite geometries , 1992 .
[51] L. Kadanoff. Scaling laws for Ising models near T(c) , 1966 .
[52] C. Fortuin,et al. On the random-cluster model: I. Introduction and relation to other models , 1972 .
[53] M. Bauer,et al. Conformal Field Theories of Stochastic Loewner Evolutions , 2002, hep-th/0210015.
[54] Analyticity of intersection exponents for planar Brownian motion , 2000, math/0005295.
[55] G. Lawler. The Dimension of the Frontier of Planar Brownian Motion , 1996 .
[56] David Bruce Wilson,et al. Generating random spanning trees more quickly than the cover time , 1996, STOC '96.
[57] Wendelin Werner,et al. Values of Brownian intersection exponents, I: Half-plane exponents , 1999 .
[58] S. Lang. Complex Analysis , 1977 .
[59] Denis Bernard,et al. Conformal Transformations and the SLE Partition Function Martingale , 2004 .
[60] Wendelin Werner,et al. Values of Brownian intersection exponents, II: Plane exponents , 2000, math/0003156.