A Guide to Stochastic Löwner Evolution and Its Applications

This article is meant to serve as a guide to recent developments in the study of the scaling limit of critical models. These new developments were made possible through the definition of the Stochastic Löwner Evolution (SLE) by Oded Schramm. This article opens with a discussion of Löwner's method, explaining how this method can be used to describe families of random curves. Then we define SLE and discuss some of its properties. We also explain how the connection can be made between SLE and the discrete models whose scaling limits it describes, or is believed to describe. Finally, we have included a discussion of results that were obtained from SLE computations. Some explicit proofs are presented as typical examples of such computations. To understand SLE sufficient knowledge of conformal mapping theory and stochastic calculus is required. This material is covered in the appendices.

[1]  H. Hochstadt Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable; 3rd ed. (Lars V. Ahlfors) , 1980 .

[2]  Wendelin Werner,et al.  Conformal invariance of planar loop-erased random walks and uniform spanning trees , 2001 .

[3]  Saleur,et al.  Exact determination of the percolation hull exponent in two dimensions. , 1987, Physical review letters.

[4]  Wendelin Werner,et al.  Conformal Restriction, Highest-Weight Representations and SLE , 2003 .

[5]  R. Baxter,et al.  q colourings of the triangular lattice , 1986 .

[6]  K. Reinhardt Über schlichte konforme Abbildungen des Einheitskreises. , 2022 .

[7]  L. Ahlfors Conformal Invariants: Topics in Geometric Function Theory , 1973 .

[8]  T. Kennedy Monte Carlo tests of stochastic Loewner evolution predictions for the 2D self-avoiding walk. , 2001, Physical review letters.

[9]  Eytan Domany,et al.  Introduction to the renormalization group and to critical phenomena , 1977 .

[10]  Bernard Nienhuis,et al.  Critical behavior of two-dimensional spin models and charge asymmetry in the Coulomb gas , 1984 .

[11]  O. Schramm,et al.  On the scaling limit of planar self-avoiding walk , 2002, math/0204277.

[12]  P. Howe,et al.  Multicritical points in two dimensions, the renormalization group and the ϵ expansion , 1989 .

[13]  Ali Esmaili,et al.  Probability and Random Processes , 2005, Technometrics.

[14]  Wendelin Werner,et al.  Conformal fields, restriction properties, degenerate representations and SLE , 2002 .

[15]  Continuum Nonsimple Loops and 2D Critical Percolation , 2003, math/0308122.

[16]  R. Baxter Exactly solved models in statistical mechanics , 1982 .

[17]  V. Kaimanovich An introduction to the Stochastic Loewner Evolution , 2004 .

[18]  Denis Bernard,et al.  SLE martingales and the Virasoro algebra , 2003 .

[19]  W. Werner Conformal restriction and related questions , 2003, math/0307353.

[20]  Oded Schramm,et al.  Harmonic explorer and its convergence to SLE4 , 2003 .

[21]  Harmonic Measure Exponents for Two-Dimensional Percolation , 1999, cond-mat/9901008.

[22]  R. Baxter,et al.  Equivalence of the Potts model or Whitney polynomial with an ice-type model , 1976 .

[23]  D. Bernard,et al.  SLEκ growth processes and conformal field theories , 2002 .

[24]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[25]  C. Pommerenke Boundary Behaviour of Conformal Maps , 1992 .

[26]  Oded Schramm A Percolation Formula , 2001 .

[27]  Bernard Nienhuis,et al.  Exact Critical Point and Critical Exponents of O ( n ) Models in Two Dimensions , 1982 .

[28]  Wendelin Werner,et al.  Values of Brownian intersection exponents III: Two-sided exponents , 2002 .

[29]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[30]  G. Lawler Hausdorff Dimension of Cut Points for Brownian Motion , 1996 .

[31]  LETTER TO THE EDITOR: Stochastic Loewner evolution and Dyson's circular ensembles , 2003, math-ph/0301039.

[32]  C. Itzykson,et al.  Conformal Invariance , 1987 .

[33]  Shang‐keng Ma Modern Theory of Critical Phenomena , 1976 .

[34]  Duplantier Conformally invariant fractals and potential theory , 2000, Physical review letters.

[35]  B. Nienhuis Locus of the tricritical transition in a two-dimensional q-state Potts model , 1991 .

[36]  K. Vahala Handbook of stochastic methods for physics, chemistry and the natural sciences , 1986, IEEE Journal of Quantum Electronics.

[37]  Wendelin Werner,et al.  One-Arm Exponent for Critical 2D Percolation , 2001 .

[38]  Conformal invariance and intersections of random walks. , 1988, Physical review letters.

[39]  Wendelin Werner,et al.  CRITICAL EXPONENTS FOR TWO-DIMENSIONAL PERCOLATION , 2001 .

[40]  G. Grimmett,et al.  Probability and random processes , 2002 .

[41]  Oded Schramm,et al.  Basic properties of SLE , 2001 .

[42]  Oded Schramm,et al.  Scaling limits of loop-erased random walks and uniform spanning trees , 1999, math/9904022.

[43]  Wendelin Werner Random planar curves and Schramm-Loewner evolutions , 2003 .

[44]  O. Schramm,et al.  Conformal restriction: The chordal case , 2002, math/0209343.

[45]  S. Smirnov Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits , 2001 .

[46]  Karl Löwner Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I , 1923 .

[47]  Conformal Invariance and Stochastic Loewner Evolution Predictions for the 2D Self-Avoiding Walk—Monte Carlo Tests , 2002, math/0207231.

[48]  Vincent Beffara Hausdorff dimensions for SLE6 , 2004 .

[49]  G. Lawler,et al.  Intersection Exponents for Planar Brownian Motion , 1999 .

[50]  John Cardy Critical percolation in finite geometries , 1992 .

[51]  L. Kadanoff Scaling laws for Ising models near T(c) , 1966 .

[52]  C. Fortuin,et al.  On the random-cluster model: I. Introduction and relation to other models , 1972 .

[53]  M. Bauer,et al.  Conformal Field Theories of Stochastic Loewner Evolutions , 2002, hep-th/0210015.

[54]  Analyticity of intersection exponents for planar Brownian motion , 2000, math/0005295.

[55]  G. Lawler The Dimension of the Frontier of Planar Brownian Motion , 1996 .

[56]  David Bruce Wilson,et al.  Generating random spanning trees more quickly than the cover time , 1996, STOC '96.

[57]  Wendelin Werner,et al.  Values of Brownian intersection exponents, I: Half-plane exponents , 1999 .

[58]  S. Lang Complex Analysis , 1977 .

[59]  Denis Bernard,et al.  Conformal Transformations and the SLE Partition Function Martingale , 2004 .

[60]  Wendelin Werner,et al.  Values of Brownian intersection exponents, II: Plane exponents , 2000, math/0003156.