Dense and Warm Neutral Gas in BR 1202-0725 at z = 4.7 as Traced by the [O I] 145 μm Line

We report the detection of [O i] 145.5 μm in the BR 1202-0725 system, a compact group at z = 4.7 consisting of a quasar (QSO), a submillimeter-bright galaxy (SMG), and three faint Lyα emitters. By taking into account the previous detections and upper limits, the [O i] /[C ii] line ratios of the now five known high-z galaxies are higher than or on the high end of the observed values in local galaxies ([O i] /[C ii] ≳ 0.13). The high [O i] /[C ii] ratios and the joint analysis with previous detection of [N ii] lines for both of the QSO and the SMG suggest the presence of warm and dense neutral gas in these highly star-forming galaxies. This is further supported by new CO (12–11) line detections and a comparison with cosmological simulations. There is a possible positive correlation between the [N ii] 122/205 line ratio and the [O i] /[C ii] ratio when all local and high-z sources are taken into account, indicating that the denser the ionized gas, the denser and warmer the neutral gas (or vice versa). The detection of the [O i] line in the BR 1202-0725 system with a relatively short amount of integration with Atacama Large Millimeter/submillimeter Array (ALMA) demonstrates the great potential of this line as a dense gas tracer for high-z galaxies.

[1]  C. Carilli,et al.  The Ionized- and Cool-gas Content of the BR1202−0725 System as Seen by MUSE and ALMA , 2020, The Astrophysical Journal.

[2]  Xiaohui Fan,et al.  Ionized and Atomic Interstellar Medium in the z = 6.003 Quasar SDSS J2310+1855 , 2020, The Astrophysical Journal.

[3]  A. Fontana,et al.  Missing [C ii] emission from early galaxies , 2020, Monthly Notices of the Royal Astronomical Society.

[4]  S. Carniani,et al.  Predicting FIR lines from simulated galaxies , 2020, 2004.06118.

[5]  A. Cimatti,et al.  The ALPINE-ALMA [CII] survey: Data processing, catalogs, and statistical source properties , 2020, Astronomy & Astrophysics.

[6]  Xiaohui Fan,et al.  Probing the Full CO Spectral Line Energy Distribution (SLED) in the Nuclear Region of a Quasar-starburst System at z = 6.003 , 2019, The Astrophysical Journal.

[7]  J. Vieira,et al.  A dense, solar metallicity ISM in the z = 4.2 dusty star-forming galaxy SPT 0418−47 , 2019, Astronomy & Astrophysics.

[8]  F. Mannucci,et al.  First [N ii]122 μm Line Detection in a QSO-SMG Pair BRI 1202−0725 at z = 4.69 , 2019, The Astrophysical Journal.

[9]  Xiaohui Fan,et al.  Far-infrared Properties of the Bright, Gravitationally Lensed Quasar J0439+1634 at z = 6.5 , 2019, The Astrophysical Journal.

[10]  H. Rix,et al.  An ALMA Multiline Survey of the Interstellar Medium of the Redshift 7.5 Quasar Host Galaxy J1342+0928 , 2019, The Astrophysical Journal.

[11]  Xiaohui Fan,et al.  Spatially Resolved Interstellar Medium and Highly Excited Dense Molecular Gas in the Most Luminous Quasar at z = 6.327 , 2019, The Astrophysical Journal.

[12]  Ran Wang,et al.  Constraints on high-J CO emission lines in z ∼ 6 quasars , 2019, Monthly Notices of the Royal Astronomical Society.

[13]  F. Walter,et al.  The CO Luminosity Density at High-z (COLDz) Survey: A Sensitive, Large-area Blind Search for Low-J CO Emission from Cold Gas in the Early Universe with the Karl G. Jansky Very Large Array , 2018, The Astrophysical Journal.

[14]  S. Maddox,et al.  Far-infrared Herschel SPIRE spectroscopy of lensed starbursts reveals physical conditions of ionized gas , 2018, Monthly Notices of the Royal Astronomical Society.

[15]  R. Davies,et al.  SHINING, A Survey of Far-infrared Lines in Nearby Galaxies. I. Survey Description, Observational Trends, and Line Diagnostics , 2018, The Astrophysical Journal.

[16]  E. Pellegrini,et al.  The Origins of [C ii] Emission in Local Star-forming Galaxies , 2017, 1707.04435.

[17]  F. Mannucci,et al.  AGN feedback on molecular gas reservoirs in quasars at z ~ 2.4 , 2017, 1706.08987.

[18]  P. P. van der Werf,et al.  ALMA [N ii] 205 μm Imaging Spectroscopy of the Interacting Galaxy System BRI 1202-0725 at Redshift 4.7 , 2017, 1706.03018.

[19]  A. Evans,et al.  A Herschel/PACS Far-infrared Line Emission Survey of Local Luminous Infrared Galaxies , 2017, 1705.04326.

[20]  M. Malkan,et al.  FAR-INFRARED LINE SPECTRA OF ACTIVE GALAXIES FROM THE HERSCHEL/PACS SPECTROMETER: THE COMPLETE DATABASE , 2016, 1607.02511.

[21]  V. Doublier,et al.  The Herschel Dwarf Galaxy Survey - I. Properties of the low-metallicity ISM from PACS spectroscopy , 2015, 1502.03131.

[22]  J. Silverman,et al.  A HIGHLY CONSISTENT FRAMEWORK FOR THE EVOLUTION OF THE STAR-FORMING “MAIN SEQUENCE” FROM z ∼ 0–6 , 2014, 1405.2041.

[23]  R. McMahon,et al.  Constraining the nature of two Lyα emitters detected by ALMA at z = 4.7 , 2014, 1401.3791.

[24]  F. Gianturco,et al.  KROME - a package to embed chemistry in astrophysical simulations , 2013, 1311.1070.

[25]  F. Mannucci,et al.  Strongly star-forming rotating disks in a complex merging system at z = 4,7 as revealed by ALMA , 2013, 1308.5113.

[26]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[27]  P. Cox,et al.  BR1202–0725: an extreme multiple merger at z = 4.7 , 2012, 1207.6722.

[28]  S. Tayal ELECTRON EXCITATION COLLISION STRENGTHS FOR SINGLY IONIZED NITROGEN , 2011 .

[29]  S. Tayal Electron impact excitation collision strength for transitions in C II , 2008 .

[30]  G. Helou,et al.  A Compendium of Far-Infrared Line and Continuum Emission for 227 Galaxies Observed by the Infrared Space Observatory , 2008, 0805.2930.

[31]  P. Hopkins,et al.  A Cosmological Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies. I. Galaxy Mergers and Quasar Activity , 2007, 0706.1243.

[32]  J. Starck,et al.  The reversal of the star formation-density relation in the distant universe , 2007, astro-ph/0703653.

[33]  C. Conselice,et al.  AEGIS: Star formation in field galaxies since z=1.1 . Dominance of gradually declining over episodic star formation , 2007 .

[34]  A. Stark,et al.  Detection of the 205 μm [N II] Line from the Carina Nebula , 2006, astro-ph/0610636.

[35]  D. Iono,et al.  A Detection of [C II] Line Emission in the z = 4.7 QSO BR 1202–0725 , 2006, astro-ph/0606043.

[36]  J. Lauroesch,et al.  Interstellar Carbon in Translucent Sight Lines , 2004, astro-ph/0401510.

[37]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[38]  C. Carilli,et al.  High-Resolution Imaging of Molecular Line Emission from High-Redshift QSOs , 2001, astro-ph/0112492.

[39]  S. Malhotra,et al.  Far-Infrared Spectroscopy of Normal Galaxies: Physical Conditions in the Interstellar Medium , 2001, astro-ph/0106485.

[40]  C. Carilli,et al.  Sensitive Radio Observations of High-Redshift Dusty QSOs , 1999, astro-ph/9909361.

[41]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[42]  G. Ferland,et al.  CLOUDY 90: Numerical Simulation of Plasmas and Their Spectra , 1998 .

[43]  R. McMahon,et al.  Molecular gas and dust around a radio-quiet quasar at redshift 4.69 , 1996, Nature.

[44]  J. Cardelli,et al.  The Abundance of Interstellar Nitrogen , 1996, astro-ph/9710162.

[45]  R. McMahon,et al.  Detection of a Lyα Emission-Line Companion to the z = 4.69 Quasar BR 1202–0725 , 1995, astro-ph/9512165.

[46]  A. Tielens,et al.  Photodissociation regions. I - Basic model. II - A model for the Orion photodissociation region , 1985 .

[47]  M. Harwit,et al.  Observations of the 145.5 micron O I forbidden emission line in the Orion Nebula , 1983 .