Dopamine Neurons Can Represent Context-Dependent Prediction Error

[1]  O. Hikosaka,et al.  Reward-predicting activity of dopamine and caudate neurons--a possible mechanism of motivational control of saccadic eye movement. , 2004, Journal of neurophysiology.

[2]  Tatsuo K Sato,et al.  Correlated Coding of Motivation and Outcome of Decision by Dopamine Neurons , 2003, The Journal of Neuroscience.

[3]  Keiji Tanaka,et al.  Neuronal Correlates of Goal-Based Motor Selection in the Prefrontal Cortex , 2003, Science.

[4]  W. Schultz,et al.  Discrete Coding of Reward Probability and Uncertainty by Dopamine Neurons , 2003, Science.

[5]  E. Miller,et al.  Coding of Cognitive Magnitude Compressed Scaling of Numerical Information in the Primate Prefrontal Cortex , 2003, Neuron.

[6]  Joshua W. Brown,et al.  Monitoring and Control of Action by the Frontal Lobes , 2002, Neuron.

[7]  O. Hikosaka,et al.  A neural correlate of response bias in monkey caudate nucleus , 2002, Nature.

[8]  O. Hikosaka,et al.  Visual and Anticipatory Bias in Three Cortical Eye Fields of the Monkey during an Adaptive Decision-Making Task , 2002, The Journal of Neuroscience.

[9]  Kenji Doya,et al.  Metalearning and neuromodulation , 2002, Neural Networks.

[10]  B. Richmond,et al.  Anterior Cingulate: Single Neuronal Signals Related to Degree of Reward Expectancy , 2002, Science.

[11]  O. Hikosaka,et al.  A Neural Correlate of Oculomotor Sequences in Supplementary Eye Field , 2002, Neuron.

[12]  O. Hikosaka,et al.  Influence of reward expectation on visuospatial processing in macaque lateral prefrontal cortex. , 2002, Journal of neurophysiology.

[13]  O. Hikosaka,et al.  Feature-Based Anticipation of Cues that Predict Reward in Monkey Caudate Nucleus , 2002, Neuron.

[14]  J. Wickens,et al.  A cellular mechanism of reward-related learning , 2001, Nature.

[15]  R. Suri Anticipatory responses of dopamine neurons and cortical neurons reproduced by internal model , 2001, Experimental Brain Research.

[16]  W. Schultz,et al.  Dopamine responses comply with basic assumptions of formal learning theory , 2001, Nature.

[17]  K. Doya,et al.  Parallel Cortico-Basal Ganglia Mechanisms for Acquisition and Execution of Visuomotor SequencesA Computational Approach , 2001, Journal of Cognitive Neuroscience.

[18]  Roland E. Suri,et al.  Temporal Difference Model Reproduces Anticipatory Neural Activity , 2001, Neural Computation.

[19]  Peter Dayan,et al.  Motivated Reinforcement Learning , 2001, NIPS.

[20]  J. Schall,et al.  Performance monitoring by the supplementary eye field , 2000, Nature.

[21]  E. Procyk,et al.  Anterior cingulate activity during routine and non-routine sequential behaviors in macaques , 2000, Nature Neuroscience.

[22]  M. Shadlen,et al.  Effect of Expected Reward Magnitude on the Response of Neurons in the Dorsolateral Prefrontal Cortex of the Macaque , 1999, Neuron.

[23]  Michael L. Platt,et al.  Neural correlates of decision variables in parietal cortex , 1999, Nature.

[24]  J. Tanji,et al.  Role for cingulate motor area cells in voluntary movement selection based on reward. , 1998, Science.

[25]  Kae Nakamura,et al.  Neuronal activity in medial frontal cortex during learning of sequential procedures. , 1998, Journal of neurophysiology.

[26]  Andrew G. Barto,et al.  Reinforcement learning , 1998 .

[27]  O. Hikosaka,et al.  Expectation of reward modulates cognitive signals in the basal ganglia , 1998, Nature Neuroscience.

[28]  J. Hollerman,et al.  Dopamine neurons report an error in the temporal prediction of reward during learning , 1998, Nature Neuroscience.

[29]  W. Schultz,et al.  Learning of sequential movements by neural network model with dopamine-like reinforcement signal , 1998, Experimental Brain Research.

[30]  W. Schultz Predictive reward signal of dopamine neurons. , 1998, Journal of neurophysiology.

[31]  M. Schlag-Rey,et al.  Antisaccade performance predicted by neuronal activity in the supplementary eye field , 1997, Nature.

[32]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[33]  Masataka Watanabe Reward expectancy in primate prefrental neurons , 1996, Nature.

[34]  J Tanji,et al.  Role for cells in the presupplementary motor area in updating motor plans. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[35]  P. Dayan,et al.  A framework for mesencephalic dopamine systems based on predictive Hebbian learning , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  Peter Dayan,et al.  Bee foraging in uncertain environments using predictive hebbian learning , 1995, Nature.

[37]  A M Graybiel,et al.  The basal ganglia and adaptive motor control. , 1994, Science.

[38]  W. Schultz,et al.  Importance of unpredictability for reward responses in primate dopamine neurons. , 1994, Journal of neurophysiology.

[39]  A. Parent,et al.  Multiple striatal representation in primate substantia nigra , 1994, The Journal of comparative neurology.

[40]  Gerald Tesauro,et al.  TD-Gammon, a Self-Teaching Backgammon Program, Achieves Master-Level Play , 1994, Neural Computation.

[41]  W. Schultz,et al.  Dopamine neurons of the monkey midbrain: contingencies of responses to active touch during self-initiated arm movements. , 1990, Journal of neurophysiology.

[42]  Richard S. Sutton,et al.  Dyna, an integrated architecture for learning, planning, and reacting , 1990, SGAR.

[43]  A G Barto,et al.  Toward a modern theory of adaptive networks: expectation and prediction. , 1981, Psychological review.

[44]  B. Richmond,et al.  Implantation of magnetic search coils for measurement of eye position: An improved method , 1980, Vision Research.

[45]  D. Robinson,et al.  A METHOD OF MEASURING EYE MOVEMENT USING A SCLERAL SEARCH COIL IN A MAGNETIC FIELD. , 1963, IEEE transactions on bio-medical engineering.

[46]  O. Hikosaka,et al.  Reward-dependent spatial selectivity of anticipatory activity in monkey caudate neurons. , 2002, Journal of neurophysiology.

[47]  J. Tanji Sequential organization of multiple movements: involvement of cortical motor areas. , 2001, Annual review of neuroscience.

[48]  O. Hikosaka,et al.  Modulation of saccadic eye movements by predicted reward outcome , 2001, Experimental Brain Research.

[49]  T. Sejnowski,et al.  A Computational Model of How the Basal Ganglia Produce Sequences , 1998, Journal of Cognitive Neuroscience.

[50]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[51]  W. Meck Neuropharmacology of timing and time perception. , 1996, Brain research. Cognitive brain research.

[52]  A. Dickinson,et al.  Reward-related signals carried by dopamine neurons. , 1995 .

[53]  A. Barto Adaptive Critics and the Basal Ganglia , 1995 .

[54]  Joel L. Davis,et al.  Adaptive Critics and the Basal Ganglia , 1995 .

[55]  Joel L. Davis,et al.  Modeling the Roles of Basal Ganglia in Timing and Sequencing Saccadic Eye Movements , 1994 .

[56]  Joel L. Davis,et al.  A Model of How the Basal Ganglia Generate and Use Neural Signals That Predict Reinforcement , 1994 .

[57]  W. Schultz,et al.  Responses of monkey dopamine neurons during learning of behavioral reactions. , 1992, Journal of neurophysiology.

[58]  W. Schultz,et al.  Responses of nigrostriatal dopamine neurons to high-intensity somatosensory stimulation in the anesthetized monkey. , 1987, Journal of neurophysiology.

[59]  R. Rescorla,et al.  A theory of Pavlovian conditioning : Variations in the effectiveness of reinforcement and nonreinforcement , 1972 .

[60]  Margaret Martonosi,et al.  ON CELLULAR , 2022 .