The application of the genetic algorithm to the minimization of potential energy functions

We adapted the genetic algorithm to minimize the AMBER potential energy function. We describe specific recombination and mutation operators for this task. Next we use our algorithm to locate low energy conformation of three polypeptides (AGAGAGAGA, A9, and [Met]-enkephalin) which are probably the global minimum conformations. Our potential energy minima are −94.71, −98.50, and −48.94 kcal/mol respectively. Next, we applied our algorithm to the 46 amino acid protein crambin and located a non-native conformation which had an AMBER potential energy ∼150 kcal/mol lower than the native conformation. This is not necessarily the global minimum conformation, but it does illustrate problems with the AMBER potential energy function. We believe this occurred because the AMBER potential energy function does not account for hydration.

[1]  Harold A. Scheraga,et al.  Protein structure prediction using a combination of sequence homology and global energy minimization I. Global energy minimization of surface loops , 1990 .

[2]  J. Gibrat,et al.  Further developments of protein secondary structure prediction using information theory. New parameters and consideration of residue pairs. , 1987, Journal of molecular biology.

[3]  Lila M. Gierasch,et al.  Protein Folding: Deciphering the Second Half of the Genetic Code , 1990 .

[4]  J. Garnier,et al.  Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. , 1978, Journal of molecular biology.

[5]  Zbigniew Michalewicz,et al.  An Experimental Comparison of Binary and Floating Point Representations in Genetic Algorithms , 1991, ICGA.

[6]  R. L. Baldwin,et al.  Large differences in the helix propensities of alanine and glycine , 1991, Nature.

[7]  R. L. Baldwin,et al.  How does protein folding get started? , 1989, Trends in biochemical sciences.

[8]  S. Wilson,et al.  Applications of simulated annealing to peptides , 1990, Biopolymers.

[9]  L. Darrell Whitley,et al.  GENITOR II: a distributed genetic algorithm , 1990, J. Exp. Theor. Artif. Intell..

[10]  Gordon M. Crippen,et al.  A novel approach to calculation of conformation: Distance geometry , 1977 .

[11]  Harold A. Scheraga,et al.  Pattern recognition in the prediction of protein structure. II. Chain conformation from a probability‐directed search procedure , 1989 .

[12]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[13]  L. Darrell Whitley,et al.  Optimizing Neural Networks Using FasterMore Accurate Genetic Search , 1989, ICGA.

[14]  C. Anfinsen Principles that govern the folding of protein chains. , 1973, Science.

[15]  F. Richards,et al.  The protein folding problem. , 1991, Scientific American.

[16]  M. Karplus,et al.  Proteins: A Theoretical Perspective of Dynamics, Structure, and Thermodynamics , 1988 .

[17]  T. Sejnowski,et al.  Predicting the secondary structure of globular proteins using neural network models. , 1988, Journal of molecular biology.

[18]  Conrad C. Huang,et al.  The MIDAS display system , 1988 .

[19]  R. L. Baldwin,et al.  Unusually stable helix formation in short alanine-based peptides. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[20]  P Stolorz,et al.  Predicting protein secondary structure using neural net and statistical methods. , 1992, Journal of molecular biology.

[21]  W. C. Still,et al.  The multiple minimum problem in molecular modeling. Tree searching internal coordinate conformational space , 1988 .

[22]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[23]  H A Scheraga,et al.  The Electrostatically Driven Monte Carlo method: Application to conformational analysis of decaglycine , 1991, Biopolymers.

[24]  Gordon M. Crippen,et al.  Global energy minimization by rotational energy embedding , 1990, J. Chem. Inf. Comput. Sci..

[25]  R Langridge,et al.  Improvements in protein secondary structure prediction by an enhanced neural network. , 1990, Journal of molecular biology.

[26]  R. Jaenicke,et al.  Protein folding: local structures, domains, subunits, and assemblies. , 1991, Biochemistry.

[27]  C. DeLisi,et al.  Determining minimum energy conformations of polypeptides by dynamic programming , 1990, Biopolymers.

[28]  M. Karplus,et al.  Protein secondary structure prediction with a neural network. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Heinz Mühlenbein,et al.  Parallel Genetic Algorithms, Population Genetics, and Combinatorial Optimization , 1989, Parallelism, Learning, Evolution.

[30]  H. Scheraga,et al.  Accessible surface areas as a measure of the thermodynamic parameters of hydration of peptides. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Harold A. Scheraga,et al.  Pattern recognition in the prediction of protein structure. III. An importance‐sampling minimization procedure , 1989 .

[32]  C. Anfinsen The Molecular Basis of Evolution , 1959, The Yale Journal of Biology and Medicine.

[33]  Yuval Davidor Analogous Crossover , 1989, ICGA.

[34]  H A Scheraga,et al.  An approach to the multiple-minima problem in protein folding by relaxing dimensionality. Tests on enkephalin. , 1987, Journal of molecular biology.

[35]  C. T. Walbridge,et al.  Genetic algorithms: What computers can learn from Darwin , 1989 .

[36]  J. Richardson,et al.  The anatomy and taxonomy of protein structure. , 1981, Advances in protein chemistry.

[37]  José Carlos Príncipe,et al.  A Simulated Annealing Like Convergence Theory for the Simple Genetic Algorithm , 1991, ICGA.

[38]  P. Kollman,et al.  An all atom force field for simulations of proteins and nucleic acids , 1986, Journal of computational chemistry.

[39]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[40]  Kurt Wüthrich,et al.  The ellipsoid algorithm as a method for the determination of polypeptide conformations from experimental distance constraints and energy minimization , 1987 .

[41]  Lawrence Davis,et al.  Training Feedforward Neural Networks Using Genetic Algorithms , 1989, IJCAI.

[42]  H. Scheraga,et al.  Computed conformational states of the 20 naturally occurring amino acid residues and of the prototype residue α-aminobutyric acid , 1983 .

[43]  Lawrence Davis,et al.  Adapting Operator Probabilities in Genetic Algorithms , 1989, ICGA.

[44]  C. Anfinsen,et al.  The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. , 1961, Proceedings of the National Academy of Sciences of the United States of America.

[45]  David J. Sirag,et al.  Toward a unified thermodynamic genetic operator , 1987 .

[46]  Reiko Tanese,et al.  Distributed Genetic Algorithms , 1989, ICGA.

[47]  Gerrit Kateman,et al.  Application of Genetic Algorithms in Chemometrics , 1989, ICGA.

[48]  L. Darrell Whitley,et al.  The GENITOR Algorithm and Selection Pressure: Why Rank-Based Allocation of Reproductive Trials is Best , 1989, ICGA.

[49]  T. Ackermann C. L. Brooks III, M. Karplus, B. M. Pettitt. Proteins: A Theoretical Perspective of Dynamics, Structure and Thermodynamics, Volume LXXI, in: Advances in Chemical Physics, John Wiley & Sons, New York 1988. 259 Seiten, Preis: US $ 65.25 , 1990 .

[50]  Carol A. Ankenbrandt An Extension to the Theory of Convergence and a Proof of the Time Complexity of Genetic Algorithms , 1990, FOGA.

[51]  H. Scheraga,et al.  Pattern recognition in the prediction of protein structure. I. Tripeptide conformational probabilities calculated from the amino acid sequence , 1989 .

[52]  Terence C. Fogarty,et al.  Varying the Probability of Mutation in the Genetic Algorithm , 1989, ICGA.

[53]  A. Kolinski,et al.  Simulations of the Folding of a Globular Protein , 1990, Science.

[54]  Harold A. Scheraga,et al.  Monte Carlo recursion evaluation of free energy , 1988 .

[55]  S Brunak,et al.  Protein secondary structure and homology by neural networks. The alpha-helices in rhodopsin. , 1988, FEBS letters.

[56]  H. Scheraga,et al.  On the multiple-minima problem in the conformational analysis of molecules: deformation of the potential energy hypersurface by the diffusion equation method , 1989 .

[57]  J. David Schaffer,et al.  An Adaptive Crossover Distribution Mechanism for Genetic Algorithms , 1987, ICGA.

[58]  I. Kuntz,et al.  Tertiary Structure Prediction , 1989 .

[59]  N. N. Khechinashvili,et al.  Thermodynamic properties of globular proteins and the principle of stabilization of their native structure. , 1990, Biochimica et biophysica acta.

[60]  H. Scheraga,et al.  Energy parameters in polypeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids , 1975 .

[61]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[62]  L. Darrell Whitley,et al.  Genetic algorithms and neural networks: optimizing connections and connectivity , 1990, Parallel Comput..

[63]  P. Y. Chou,et al.  Prediction of protein conformation. , 1974, Biochemistry.

[64]  Stephen F. Smith,et al.  Using Genetic Algorithms to Schedule Flow Shop Releases , 1989, ICGA.

[65]  D. Ackley A connectionist machine for genetic hillclimbing , 1987 .

[66]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[67]  John J. Grefenstette,et al.  How Genetic Algorithms Work: A Critical Look at Implicit Parallelism , 1989, ICGA.

[68]  M. Levitt Protein folding by restrained energy minimization and molecular dynamics. , 1983, Journal of molecular biology.

[69]  H. Scheraga,et al.  Monte Carlo-minimization approach to the multiple-minima problem in protein folding. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[70]  A. D. McLachlan,et al.  Solvation energy in protein folding and binding , 1986, Nature.

[71]  G. Fasman The Development of the Prediction of Protein Structure , 1989 .