Nadir point estimation for many-objective optimization problems based on emphasized critical regions

Nadir points play an important role in many-objective optimization problems, which describe the ranges of their Pareto fronts. Using nadir points as references, decision makers may obtain their preference information for many-objective optimization problems. As the number of objectives increases, nadir point estimation becomes a more difficult task. In this paper, we propose a novel nadir point estimation method based on emphasized critical regions for many-objective optimization problems. It maintains the non-dominated solutions near extreme points and critical regions after an individual number assignment to different critical regions. Furthermore, it eliminates similar individuals by a novel self-adaptive $$\varepsilon $$ε-clearing strategy. Our approach has been shown to perform better on many-objective optimization problems (between 10 objectives and 35 objectives) than two other state-of-the-art nadir point estimation approaches.

[1]  Hisao Ishibuchi,et al.  Review of coevolutionary developments of evolutionary multi-objective and many-objective algorithms and test problems , 2014, 2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM).

[2]  R. Benayoun,et al.  Linear programming with multiple objective functions: Step method (stem) , 1971, Math. Program..

[3]  Huayou Chen,et al.  Intuitionistic Fuzzy Interaction Bonferroni Means and Its Application to Multiple Attribute Decision Making , 2015, IEEE Transactions on Cybernetics.

[4]  Zhi-Ping Fan,et al.  A method for group decision-making based on multi-granularity uncertain linguistic information , 2010, Expert Syst. Appl..

[5]  Evan J. Hughes,et al.  Evolutionary many-objective optimisation: many once or one many? , 2005, 2005 IEEE Congress on Evolutionary Computation.

[6]  Kalyanmoy Deb,et al.  Interactive evolutionary multi-objective optimization and decision-making using reference direction method , 2007, GECCO '07.

[7]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[8]  R. Lyndon While,et al.  A review of multiobjective test problems and a scalable test problem toolkit , 2006, IEEE Transactions on Evolutionary Computation.

[9]  M. Dessouky,et al.  Estimates of the minimum nondominated criterion values in multiple-criteria decision-making , 1986 .

[10]  Jun Zhang,et al.  An Evolutionary Algorithm with Double-Level Archives for Multiobjective Optimization , 2015, IEEE Transactions on Cybernetics.

[11]  Fang Liu,et al.  A Multiobjective Evolutionary Algorithm Based on Decision Variable Analyses for Multiobjective Optimization Problems With Large-Scale Variables , 2016, IEEE Transactions on Evolutionary Computation.

[12]  Kalyanmoy Deb,et al.  Towards estimating nadir objective vector using evolutionary approaches , 2006, GECCO.

[13]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[14]  Kalyanmoy Deb,et al.  Toward an Estimation of Nadir Objective Vector Using a Hybrid of Evolutionary and Local Search Approaches , 2010, IEEE Transactions on Evolutionary Computation.

[15]  Xin Yao,et al.  A New Dominance Relation-Based Evolutionary Algorithm for Many-Objective Optimization , 2016, IEEE Transactions on Evolutionary Computation.

[16]  Jürgen Branke,et al.  A Multi-population Approach to Dynamic Optimization Problems , 2000 .

[17]  Francisco Herrera,et al.  A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms , 2011, Swarm Evol. Comput..

[18]  Jie Zhang,et al.  Consistencies and Contradictions of Performance Metrics in Multiobjective Optimization , 2014, IEEE Transactions on Cybernetics.

[19]  Tien-Chin Wang,et al.  Solving multi-criteria decision making with incomplete linguistic preference relations , 2011, Expert Syst. Appl..

[20]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[21]  Kalyanmoy Deb,et al.  A Hybrid Integrated Multi-Objective Optimization Procedure for Estimating Nadir Point , 2009, EMO.

[22]  Kalyanmoy Deb,et al.  Finding Knees in Multi-objective Optimization , 2004, PPSN.

[23]  Kalyanmoy Deb,et al.  Multiobjective optimization , 1997 .

[24]  Xin Yao,et al.  Two_Arch2: An Improved Two-Archive Algorithm for Many-Objective Optimization , 2015, IEEE Transactions on Evolutionary Computation.

[25]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[26]  Bo Zhang,et al.  Balancing Convergence and Diversity in Decomposition-Based Many-Objective Optimizers , 2016, IEEE Transactions on Evolutionary Computation.

[27]  Jianhua Dai,et al.  An Uncertainty Measure for Incomplete Decision Tables and Its Applications , 2013, IEEE Transactions on Cybernetics.

[28]  Qingfu Zhang,et al.  Interrelationship-Based Selection for Decomposition Multiobjective Optimization , 2015, IEEE Transactions on Cybernetics.

[29]  K. Deb,et al.  A Review of Nadir Point Estimation Procedures Using Evolutionary Approaches: A Tale of Dimensionality Reduction , 2008 .

[30]  Kathrin Klamroth,et al.  Integrating Approximation and Interactive Decision Making in Multicriteria Optimization , 2008, Oper. Res..

[31]  Hisao Ishibuchi,et al.  Evolutionary many-objective optimization: A short review , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[32]  Ralph E. Steuer,et al.  A Heuristic for Estimating Nadir Criterion Values in Multiple Objective Linear Programming , 1997, Oper. Res..

[33]  Lothar Thiele,et al.  A Preference-Based Evolutionary Algorithm for Multi-Objective Optimization , 2009, Evolutionary Computation.

[34]  Xin Yao,et al.  How well do multi-objective evolutionary algorithms scale to large problems , 2007, 2007 IEEE Congress on Evolutionary Computation.

[35]  Qingfu Zhang,et al.  MOEA/D-ACO: A Multiobjective Evolutionary Algorithm Using Decomposition and AntColony , 2013, IEEE Transactions on Cybernetics.

[36]  Maghsoud Amiri,et al.  Nadir compromise programming: A model for optimization of multi-objective portfolio problem , 2011, Expert Syst. Appl..

[37]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[38]  Peter J. Fleming,et al.  Evolutionary many-objective optimisation: an exploratory analysis , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[39]  A. P. Wierzbicki,et al.  Application of multiple criteria evolutionary algorithms to vector optimisation, decision support and reference point approaches , 2003 .

[40]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[41]  Matthias Ehrgott,et al.  Computation of ideal and Nadir values and implications for their use in MCDM methods , 2003, Eur. J. Oper. Res..

[42]  Khaled Ghédira,et al.  The r-Dominance: A New Dominance Relation for Interactive Evolutionary Multicriteria Decision Making , 2010, IEEE Transactions on Evolutionary Computation.

[43]  Xin Yao,et al.  Performance Scaling of Multi-objective Evolutionary Algorithms , 2003, EMO.

[44]  Kalyanmoy Deb,et al.  An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints , 2014, IEEE Transactions on Evolutionary Computation.

[45]  Khaled Ghédira,et al.  Estimating nadir point in multi-objective optimization using mobile reference points , 2010, IEEE Congress on Evolutionary Computation.

[46]  Kaisa Miettinen,et al.  NAUTILUS method: An interactive technique in multiobjective optimization based on the nadir point , 2010, Eur. J. Oper. Res..