Quantum Algorithms for Abelian Difference Sets and Applications to Dihedral Hidden Subgroups

Difference sets are basic combinatorial structures that have applications in signal processing, coding theory, and cryptography. We consider the problem of identifying a shifted version of the characteristic function of a (known) difference set and present a general algorithm that can be used to tackle any hidden shift problem for any difference set in any abelian group. We discuss special cases of this framework which include a) Paley difference sets based on quadratic residues in finite fields which allow to recover the shifted Legendre function quantum algorithm, b) Hadamard difference sets which allow to recover the shifted bent function quantum algorithm, and c) Singer difference sets which allow us to define instances of the dihedral hidden subgroup problem which can be efficiently solved on a quantum computer.

[1]  Fang Song,et al.  A quantum algorithm for computing the unit group of an arbitrary degree number field , 2014, STOC.

[2]  Mikhail N. Vyalyi,et al.  Classical and quantum codes , 2002 .

[3]  Andrew M. Childs,et al.  Quantum algorithms for algebraic problems , 2008, 0812.0380.

[4]  Jennifer Seberry,et al.  Fundamentals of Computer Security , 2003, Springer Berlin Heidelberg.

[5]  Mirmojtaba Gharibi,et al.  Reduction from non-injective hidden shift problem to injective hidden shift problem , 2012, Quantum Inf. Comput..

[6]  Frédéric Magniez,et al.  Hidden translation and orbit coset in quantum computing , 2002, STOC '03.

[7]  Akash Saxena,et al.  Fundamentals of Computer , 2006 .

[8]  Greg Kuperberg,et al.  Another Subexponential-time Quantum Algorithm for the Dihedral Hidden Subgroup Problem , 2011, TQC.

[9]  Martin Rötteler,et al.  Quantum algorithm for the Boolean hidden shift problem , 2011, COCOON.

[10]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[11]  Martin Rötteler,et al.  Quantum Algorithms to Solve the Hidden Shift Problem for Quadratics and for Functions of Large Gowers Norm , 2009, MFCS.

[12]  Michele Mosca,et al.  The Hidden Subgroup Problem and Eigenvalue Estimation on a Quantum Computer , 1998, QCQC.

[13]  R. Turyn Character sums and difference sets. , 1965 .

[14]  C. Lomont THE HIDDEN SUBGROUP PROBLEM - REVIEW AND OPEN PROBLEMS , 2004, quant-ph/0411037.

[15]  Martin Rötteler,et al.  Limitations of quantum coset states for graph isomorphism , 2006, STOC '06.

[16]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[17]  O. Regev A Subexponential Time Algorithm for the Dihedral Hidden Subgroup Problem with Polynomial Space , 2004, quant-ph/0406151.

[18]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[19]  Richard J. Lipton,et al.  Quantum Cryptanalysis of Hidden Linear Functions (Extended Abstract) , 1995, CRYPTO.

[20]  Alexander Russell,et al.  The Power of Strong Fourier Sampling: Quantum Algorithms for Affine Groups and Hidden Shifts , 2007, SIAM J. Comput..

[21]  Oded Regev,et al.  Quantum computation and lattice problems , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[22]  Martin Rötteler,et al.  Quantum algorithms for highly non-linear Boolean functions , 2008, SODA '10.

[23]  B. Huppert Endliche Gruppen I , 1967 .

[24]  Gadiel Seroussi,et al.  Efficient Quantum Algorithms for Estimating Gauss Sums , 2002, quant-ph/0207131.

[25]  Greg Kuperberg A Subexponential-Time Quantum Algorithm for the Dihedral Hidden Subgroup Problem , 2005, SIAM J. Comput..

[26]  Maris Ozols,et al.  Quantum rejection sampling , 2011, ITCS '12.

[27]  Sean Hallgren,et al.  Quantum algorithms for some hidden shift problems , 2003, SODA '03.

[28]  Pawel Wocjan,et al.  On the quantum hardness of solving isomorphism problems as nonabelian hidden shift problems , 2007, Quantum Inf. Comput..

[29]  Raymond Laflamme,et al.  An Introduction to Quantum Computing , 2007, Quantum Inf. Comput..

[30]  Gilles Brassard,et al.  An exact quantum polynomial-time algorithm for Simon's problem , 1997, Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems.

[31]  Richard Jozsa,et al.  Quantum factoring, discrete logarithms, and the hidden subgroup problem , 1996, Comput. Sci. Eng..

[32]  Maris Ozols,et al.  Easy and hard functions for the Boolean hidden shift problem , 2013, TQC.

[33]  P. Høyer,et al.  A Quantum Observable for the Graph Isomorphism Problem , 1999, quant-ph/9901029.

[34]  Hanfried Lenz,et al.  Design Theory: Contents of Volume I , 1999 .

[35]  Richard Jozsa Quantum computation in algebraic number theory: Hallgren’s efficient quantum algorithm for solving Pell’s equation , 2003 .

[36]  E. Lander Symmetric Designs: An Algebraic Approach , 1983 .

[37]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[38]  Douglas R. Stinson,et al.  Combinatorial designs: constructions and analysis , 2003, SIGA.

[39]  Dave Bacon,et al.  Optimal measurements for the dihedral hidden subgroup problem , 2005, Chic. J. Theor. Comput. Sci..

[40]  P. Høyer Efficient Quantum Transforms , 1997, quant-ph/9702028.

[41]  今井 浩 20世紀の名著名論:Peter Shor : Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 2004 .

[42]  Gábor Ivanyos,et al.  On solving systems of random linear disequations , 2007, Quantum Inf. Comput..

[43]  Peter W. Shor Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1999 .

[44]  Mark Ettinger,et al.  On Quantum Algorithms for Noncommutative Hidden Subgroups , 1998, STACS.

[45]  Oded Regev,et al.  New lattice based cryptographic constructions , 2003, STOC '03.

[46]  U. Vazirani,et al.  Quantum algorithms and the fourier transform , 2004 .