暂无分享,去创建一个
[1] Fang Song,et al. A quantum algorithm for computing the unit group of an arbitrary degree number field , 2014, STOC.
[2] Mikhail N. Vyalyi,et al. Classical and quantum codes , 2002 .
[3] Andrew M. Childs,et al. Quantum algorithms for algebraic problems , 2008, 0812.0380.
[4] Jennifer Seberry,et al. Fundamentals of Computer Security , 2003, Springer Berlin Heidelberg.
[5] Mirmojtaba Gharibi,et al. Reduction from non-injective hidden shift problem to injective hidden shift problem , 2012, Quantum Inf. Comput..
[6] Frédéric Magniez,et al. Hidden translation and orbit coset in quantum computing , 2002, STOC '03.
[7] Akash Saxena,et al. Fundamentals of Computer , 2006 .
[8] Greg Kuperberg,et al. Another Subexponential-time Quantum Algorithm for the Dihedral Hidden Subgroup Problem , 2011, TQC.
[9] Martin Rötteler,et al. Quantum algorithm for the Boolean hidden shift problem , 2011, COCOON.
[10] F. MacWilliams,et al. The Theory of Error-Correcting Codes , 1977 .
[11] Martin Rötteler,et al. Quantum Algorithms to Solve the Hidden Shift Problem for Quadratics and for Functions of Large Gowers Norm , 2009, MFCS.
[12] Michele Mosca,et al. The Hidden Subgroup Problem and Eigenvalue Estimation on a Quantum Computer , 1998, QCQC.
[13] R. Turyn. Character sums and difference sets. , 1965 .
[14] C. Lomont. THE HIDDEN SUBGROUP PROBLEM - REVIEW AND OPEN PROBLEMS , 2004, quant-ph/0411037.
[15] Martin Rötteler,et al. Limitations of quantum coset states for graph isomorphism , 2006, STOC '06.
[16] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[17] O. Regev. A Subexponential Time Algorithm for the Dihedral Hidden Subgroup Problem with Polynomial Space , 2004, quant-ph/0406151.
[18] Alexei Y. Kitaev,et al. Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..
[19] Richard J. Lipton,et al. Quantum Cryptanalysis of Hidden Linear Functions (Extended Abstract) , 1995, CRYPTO.
[20] Alexander Russell,et al. The Power of Strong Fourier Sampling: Quantum Algorithms for Affine Groups and Hidden Shifts , 2007, SIAM J. Comput..
[21] Oded Regev,et al. Quantum computation and lattice problems , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..
[22] Martin Rötteler,et al. Quantum algorithms for highly non-linear Boolean functions , 2008, SODA '10.
[23] B. Huppert. Endliche Gruppen I , 1967 .
[24] Gadiel Seroussi,et al. Efficient Quantum Algorithms for Estimating Gauss Sums , 2002, quant-ph/0207131.
[25] Greg Kuperberg. A Subexponential-Time Quantum Algorithm for the Dihedral Hidden Subgroup Problem , 2005, SIAM J. Comput..
[26] Maris Ozols,et al. Quantum rejection sampling , 2011, ITCS '12.
[27] Sean Hallgren,et al. Quantum algorithms for some hidden shift problems , 2003, SODA '03.
[28] Pawel Wocjan,et al. On the quantum hardness of solving isomorphism problems as nonabelian hidden shift problems , 2007, Quantum Inf. Comput..
[29] Raymond Laflamme,et al. An Introduction to Quantum Computing , 2007, Quantum Inf. Comput..
[30] Gilles Brassard,et al. An exact quantum polynomial-time algorithm for Simon's problem , 1997, Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems.
[31] Richard Jozsa,et al. Quantum factoring, discrete logarithms, and the hidden subgroup problem , 1996, Comput. Sci. Eng..
[32] Maris Ozols,et al. Easy and hard functions for the Boolean hidden shift problem , 2013, TQC.
[33] P. Høyer,et al. A Quantum Observable for the Graph Isomorphism Problem , 1999, quant-ph/9901029.
[34] Hanfried Lenz,et al. Design Theory: Contents of Volume I , 1999 .
[35] Richard Jozsa. Quantum computation in algebraic number theory: Hallgren’s efficient quantum algorithm for solving Pell’s equation , 2003 .
[36] E. Lander. Symmetric Designs: An Algebraic Approach , 1983 .
[37] Peter W. Shor,et al. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..
[38] Douglas R. Stinson,et al. Combinatorial designs: constructions and analysis , 2003, SIGA.
[39] Dave Bacon,et al. Optimal measurements for the dihedral hidden subgroup problem , 2005, Chic. J. Theor. Comput. Sci..
[40] P. Høyer. Efficient Quantum Transforms , 1997, quant-ph/9702028.
[41] 今井 浩. 20世紀の名著名論:Peter Shor : Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 2004 .
[42] Gábor Ivanyos,et al. On solving systems of random linear disequations , 2007, Quantum Inf. Comput..
[43] Peter W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1999 .
[44] Mark Ettinger,et al. On Quantum Algorithms for Noncommutative Hidden Subgroups , 1998, STACS.
[45] Oded Regev,et al. New lattice based cryptographic constructions , 2003, STOC '03.
[46] U. Vazirani,et al. Quantum algorithms and the fourier transform , 2004 .