A Modal Logic for Indiscernibility and Complementarity in Information Systems

In this paper, we study indiscernibility relations and complementarity relations in information systems. The first-order characterization of indiscernibility and complementarity is obtained through a duality result between information systems and certain structures of relational type characterized by first-order conditions. The modal analysis of indiscernibility and complementarity is performed through a modal logic which modalities correspond to indiscernibility relations and complementarity relations in information systems.

[1]  Walter J. Savitch,et al.  Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..

[2]  Max J. Cresswell,et al.  A companion to modal logic , 1984 .

[3]  Ewa Orlowska,et al.  Kripke semantics for knowledge representation logics , 1990, Stud Logica.

[4]  Dimiter Vakarelov,et al.  Information Systems, Similarity Relations and Modal Logics , 1998 .

[5]  Ewa Orlowska,et al.  Logic of nondeterministic information , 1985, Stud Logica.

[6]  I-Peng Lin,et al.  The Computational Complexity of the Satisfiability of Modal Horn Clauses for Modal Propositional Logics , 1994, Theor. Comput. Sci..

[7]  Dimiter Vakarelov,et al.  First-Order Characterization and Modal Analysis of Indiscernibility and Complementarity in Information Systems , 2001, ECSQARU.

[8]  Dimiter Vakarelov,et al.  A model logic for similarity relations in pawlak knowledge representation systems , 1991, Fundam. Informaticae.

[9]  Stéphane Demri,et al.  The Nondeterministic Information Logic NIL is PSPACE-complete , 2000, Fundam. Informaticae.

[10]  Dimiter Vakarelov,et al.  A duality between Pawlak's knowledge representation systems and bi-consequence systems , 1995, Stud Logica.

[11]  Zdzislaw Pawlak,et al.  Information systems theoretical foundations , 1981, Inf. Syst..

[12]  Jorge Lobo,et al.  Modal logics for knowledge representation systems , 1991 .

[13]  Edith Spaan The Complexity of Propositional Tense Logics , 1993 .

[14]  Ewa Orlowska,et al.  Representation of Nondeterministic Information , 1984, Theor. Comput. Sci..