Calculation Formulas and Simulation Algorithms for Entropy of Function of LR Fuzzy Intervals

Entropy has continuously arisen as one of the pivotal issues in optimization, mainly in portfolios, as an indicator of risk measurement. Aiming to simplify operations and extending applications of entropy in the field of LR fuzzy interval theory, this paper first proposes calculation formulas for the entropy of function via the inverse credibility distribution to directly calculate the entropy of linear function or simple nonlinear function of LR fuzzy intervals. Subsequently, to deal with the entropy of complicated nonlinear function, two novel simulation algorithms are separately designed by combining the uniform discretization process and the numerical integration process with the proposed calculation formulas. Compared to the existing simulation algorithms, the numerical results show that the advantage of the algorithms is well displayed in terms of stability, accuracy, and speed. On the whole, the simplified calculation formulas and the effective simulation algorithms proposed in this paper provide a powerful tool for the LR fuzzy interval theory, especially in entropy optimization.

[1]  Wei-Guo Zhang,et al.  Multiperiod Fuzzy Portfolio Selection Optimization Model Based on Possibility Theory , 2018, Int. J. Inf. Technol. Decis. Mak..

[2]  Robert LIN,et al.  NOTE ON FUZZY SETS , 2014 .

[3]  Sumaira Qayyum,et al.  Entropy optimization in flow of Williamson nanofluid in the presence of chemical reaction and Joule heating , 2019, International Journal of Heat and Mass Transfer.

[4]  L. Zadeh Probability measures of Fuzzy events , 1968 .

[5]  D. Dubois,et al.  Operations on fuzzy numbers , 1978 .

[6]  Yian-Kui Liu,et al.  Expected value of fuzzy variable and fuzzy expected value models , 2002, IEEE Trans. Fuzzy Syst..

[7]  Manoj Thakur,et al.  Modelling and constructing membership function for uncertain portfolio parameters: A credibilistic framework , 2017, Expert Syst. Appl..

[8]  Maria Rosaria Simonelli Indeterminacy in portfolio selection , 2005, Eur. J. Oper. Res..

[9]  Baoding Liu,et al.  Theory and Practice of Uncertain Programming , 2003, Studies in Fuzziness and Soft Computing.

[10]  Hui Yu,et al.  Physics Inspired Methods for Crowd Video Surveillance and Analysis: A Survey , 2018, IEEE Access.

[11]  Irfan-Ullah Awan,et al.  Performance analysis of a threshold-based discrete-time queue using maximum entropy , 2009, Simul. Model. Pract. Theory.

[12]  Xin Gao,et al.  Maximum entropy membership functions for discrete fuzzy variables , 2009, Inf. Sci..

[13]  Zhiguo Wang,et al.  Data-driven scheduling optimization under uncertainty using Renyi entropy and skewness criterion , 2018, Comput. Ind. Eng..

[14]  Hanna Göransson,et al.  Improving Bayesian credibility intervals for classifier error rates using maximum entropy empirical priors , 2010, Artif. Intell. Medicine.

[15]  Xiang Li,et al.  A hybrid intelligent algorithm for portfolio selection problem with fuzzy returns , 2009, J. Comput. Appl. Math..

[16]  Tamaz Gachechiladze,et al.  Entropy of fuzzy events , 1997, Fuzzy Sets Syst..

[17]  Junfeng Zhao,et al.  Sensitivity Analysis of the Fuzzy Mean-Entropy Portfolio Model with Transaction Costs Based on Credibility Theory , 2018, Int. J. Fuzzy Syst..

[18]  Baoding Liu,et al.  Entropy of Credibility Distributions for Fuzzy Variables , 2008, IEEE Transactions on Fuzzy Systems.

[19]  Fuyuan Xiao,et al.  A Weighted Combination Method for Conflicting Evidence in Multi-Sensor Data Fusion , 2018, Sensors.

[20]  Haitao Yu,et al.  Time consistent fuzzy multi-period rolling portfolio optimization with adaptive risk aversion factor , 2017, J. Ambient Intell. Humaniz. Comput..

[21]  Alireza Sajedi,et al.  Portfolio Selection in the Credibilistic Framework Using Renyi Entropy and Renyi Cross Entropy , 2018, Int. J. Fuzzy Log. Intell. Syst..

[22]  Xiaoxia Huang,et al.  Mean-Entropy Models for Fuzzy Portfolio Selection , 2008, IEEE Transactions on Fuzzy Systems.

[23]  Hui Yin,et al.  Possibility-based robust design optimization for the structural-acoustic system with fuzzy parameters , 2018 .

[24]  J. Buckley,et al.  Fuzzy genetic algorithm and applications , 1994 .

[25]  Carreño Carreño,et al.  Evaluación de la diversidad taxonómica y funcional de la comunidad microbiana relacionada con el ciclo del nitrógeno en suelos de cultivo de arroz con diferentes manejos del tamo , 2020 .

[26]  P. Smaldino Measures of individual uncertainty for ecological models: Variance and entropy , 2013 .

[27]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[28]  Fan Yang,et al.  Fuzzy arithmetic on LR fuzzy numbers with applications to fuzzy programming , 2015, J. Intell. Fuzzy Syst..

[29]  Pranesh Kumar,et al.  Credibility Measure for Intuitionistic Fuzzy Variables , 2018 .

[30]  George C. Philippatos,et al.  Entropy, market risk, and the selection of efficient portfolios , 1972 .

[31]  Baoding Liu,et al.  Chance constrained programming with fuzzy parameters , 1998, Fuzzy Sets Syst..

[32]  Xiaoxia Huang,et al.  A review of credibilistic portfolio selection , 2009, Fuzzy Optim. Decis. Mak..