Penalized contrast estimator for adaptive density deconvolution

The authors consider the problem of estimating the density g of independent and identically dis tributed variables Xi, from a sample Z1, ... , Z,, such that Zi = Xi + aei for i = 1, . ., n, and e is noise independent of X, with ae having a known distribution. They present a model selection procedure allowing one to construct an adaptive estimator of g and to find nonasymptotic risk bounds. The estimator achieves the minimax rate of convergence, in most cases where lower bounds are available. A simulation study gives an illustration of the good practical performance of the method.

[1]  P. Massart,et al.  Risk bounds for model selection via penalization , 1999 .

[2]  P. Hall,et al.  Optimal Rates of Convergence for Deconvolving a Density , 1988 .

[3]  Cristina Butucea,et al.  Sharp Optimality in Density Deconvolution with Dominating Bias. II , 2008 .

[4]  Christian H. Hesse,et al.  Data-driven deconvolution , 1999 .

[5]  Ja-Yong Koo Logspline Deconvolution in Besov Space , 1999 .

[6]  Irène Gijbels,et al.  Bootstrap bandwidth selection in kernel density estimation from a contaminated sample , 2004 .

[7]  F. Comte,et al.  Penalized Projection Estimator for Volatility Density , 2006 .

[8]  Yves Rozenholc,et al.  How many bins should be put in a regular histogram , 2006 .

[9]  A. Tsybakov,et al.  Block Thresholding and Sharp Adaptive Estimation in Severely Ill-Posed Inverse Problems , 2004 .

[10]  I. Ibragimov,et al.  Estimation of distribution density , 1983 .

[11]  Catherine Matias,et al.  Minimax estimation of the noise level and of the deconvolution density in a semiparametric convolution model , 2005 .

[12]  Jianqing Fan On the Optimal Rates of Convergence for Nonparametric Deconvolution Problems , 1991 .

[13]  Elias Masry,et al.  Multivariate probability density deconvolution for stationary random processes , 1991, IEEE Trans. Inf. Theory.

[14]  Ja-Yong Koo,et al.  Wavelet deconvolution , 2002, IEEE Trans. Inf. Theory.

[15]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[16]  Alexander Meister,et al.  On the effect of misspecifying the error density in a deconvolution problem , 2004 .

[17]  Irène Gijbels,et al.  Practical bandwidth selection in deconvolution kernel density estimation , 2004, Comput. Stat. Data Anal..

[18]  C. Butucea Deconvolution of supersmooth densities with smooth noise , 2004 .

[19]  B. Vidakovic,et al.  Adaptive wavelet estimator for nonparametric density deconvolution , 1999 .

[20]  Sharp optimality and some effects of dominating bias in density deconvolution , .

[21]  Density deconvolution based on wavelets with bounded supports , 2002 .

[22]  L. Devroye Consistent deconvolution in density estimation , 1989 .

[23]  A. Tsybakov On the best rate of adaptive estimation in some inverse problems , 2000 .

[24]  M. Talagrand New concentration inequalities in product spaces , 1996 .

[25]  Cun-Hui Zhang Fourier Methods for Estimating Mixing Densities and Distributions , 1990 .

[26]  E. Cator Deconvolution with arbitrarily smooth kernels , 2001 .

[27]  R. Carroll,et al.  Deconvolving kernel density estimators , 1987 .

[28]  Robert L. Taylor,et al.  A consistent nonparametric density estimator for the deconvolution problem , 1989 .