Technological change in lithium iron phosphate battery: the key-route main path analysis

[1]  Pierpaolo D'Urso,et al.  Fuzzy clustering of human activity patterns , 2013, Fuzzy Sets Syst..

[2]  B. Verspagen,et al.  Knowledge flows : analyzing the core literature of innovation, entrepreneurship and science and technology studies , 2012 .

[3]  John S. Liu,et al.  An integrated approach for main path analysis: Development of the Hirsch index as an example , 2012, J. Assoc. Inf. Sci. Technol..

[4]  Arianna Martinelli,et al.  An emerging paradigm or just another trajectory? Understanding the nature of technological changes using engineering heuristics in the telecommunications switching industry , 2012 .

[5]  M. Safari,et al.  Aging of a Commercial Graphite/LiFePO4 Cell , 2011 .

[6]  Mohammadhosein Safari,et al.  Modeling of a Commercial Graphite/LiFePO4 Cell , 2011 .

[7]  Fernando Jiménez-Sáez,et al.  Mapping the importance of the real world: The validity of connectivity analysis of patent citations networks , 2011 .

[8]  Wei-Jun Zhang Structure and performance of LiFePO 4 cathode materials: A review , 2011 .

[9]  Stefan Adams,et al.  Simulated defect and interface engineering for high power Li electrode materials , 2011 .

[10]  Ping He,et al.  Olivine LiFePO4: development and future , 2011 .

[11]  Lixia Yuan,et al.  Development and challenges of LiFePO4 cathode material for lithium-ion batteries , 2011 .

[12]  M. Safari,et al.  Mathematical Modeling of Lithium Iron Phosphate Electrode: Galvanostatic Charge/Discharge and Path Dependence , 2011 .

[13]  Jeffrey W. Fergus,et al.  Recent developments in cathode materials for lithium ion batteries , 2010 .

[14]  Stefan Adams,et al.  Lithium ion pathways in LiFePO4 and related olivines , 2010 .

[15]  Yoshihiro Yamada,et al.  Open-circuit voltage study on LiFePO4 olivine cathode , 2009 .

[16]  Margret Wohlfahrt-Mehrens,et al.  Nonstoichiometric LiFePO4: Defects and Related Properties , 2009 .

[17]  Peter S. Fader,et al.  Path Data in Marketing: An Integrative Framework and Prospectus for Model-Building , 2007, Mark. Sci..

[18]  Alain Mauger,et al.  Study of the Li-insertion/extraction process in LiFePO4/FePO4 , 2009 .

[19]  Takashi Ida,et al.  Isolation of Solid Solution Phases in Size‐Controlled LixFePO4 at Room Temperature , 2009 .

[20]  J. Tarascon,et al.  Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4 , 2009 .

[21]  Montse Casas-Cabanas,et al.  Room-temperature single-phase Li insertion/extraction in nanoscale Li(x)FePO4. , 2008, Nature materials.

[22]  J. Youtie,et al.  Refining search terms for nanotechnology , 2008 .

[23]  C. Fisher,et al.  Surface structures and crystal morphologies of LiFePO4: relevance to electrochemical behaviour , 2008 .

[24]  Thomas J. Richardson,et al.  Metastable Solid-Solution Phases in the LiFePO4 ∕ FePO4 System , 2007 .

[25]  John Metcalfe,et al.  Mapping evolutionary trajectories: Applications to the growth and transformation of medical knowledge , 2007 .

[26]  Bart Verspagen,et al.  Mapping Technological Trajectories as Patent citation Networks: a Study on the History of Fuel Cell Research , 2007, Adv. Complex Syst..

[27]  Charles Delacourt,et al.  Study of the LiFePO4/FePO4 Two-Phase System by High-Resolution Electron Energy Loss Spectroscopy , 2006 .

[28]  L. Nazar,et al.  Small polaron hopping in Li(x)FePO4 solid solutions: coupled lithium-ion and electron mobility. , 2006, Journal of the American Chemical Society.

[29]  Christian Masquelier,et al.  Size Effects on Carbon-Free LiFePO4 Powders The Key to Superior Energy Density , 2006 .

[30]  Masao Yonemura,et al.  Room-temperature miscibility gap in LixFePO4 , 2006, Nature materials.

[31]  Gerbrand Ceder,et al.  Ab initio study of the migration of small polarons in olivine Li x FePO 4 and their association with lithium ions and vacancies , 2006 .

[32]  Venkat Srinivasan,et al.  Existence of path-dependence in the LiFePO4 electrode , 2006 .

[33]  Masao Yonemura,et al.  Electrochemical, Magnetic, and Structural Investigation of the Lix(MnyFe1-y)PO4 Olivine Phases , 2006 .

[34]  Atsuo Yamada,et al.  Phase Change in Li x FePO4 , 2005 .

[35]  Jasjit Singh,et al.  Collaborative Networks as Determinants of Knowledge Diffusion Patterns , 2005, Manag. Sci..

[36]  Jean-Marie Tarascon,et al.  The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1 , 2005 .

[37]  Masao Yonemura,et al.  Fast Charging LiFePO4 , 2005 .

[38]  S. Hung Explaining the process of innovation: The dynamic reconciliation of action and structure , 2004 .

[39]  C. Delacourt,et al.  Low temperature preparation of optimized phosphates for Li-battery applications , 2004 .

[40]  A. Yamada,et al.  Comparative Kinetic Study of Olivine Li x MPO 4 ( M = Fe , Mn) , 2004 .

[41]  N. A. W. Holzwarth,et al.  Electronic structure of FePO 4 , LiFePO 4 , and related materials , 2003 .

[42]  Vladimir Batagelj,et al.  Efficient Algorithms for Citation Network Analysis , 2003, ArXiv.

[43]  A. Yamada,et al.  Olivine-type cathodes: Achievements and problems , 2003 .

[44]  J. Barker,et al.  Lithium Iron(II) Phospho-olivines Prepared by a Novel Carbothermal Reduction Method , 2003 .

[45]  Y. Chiang,et al.  Electronically conductive phospho-olivines as lithium storage electrodes , 2002, Nature materials.

[46]  Stefan H. Thomke,et al.  Asset accumulation, interdependence and technological change: evidence from pharmaceutical drug discovery , 2002 .

[47]  Peter Y. Zavalij,et al.  Reactivity, stability and electrochemical behavior of lithium iron phosphates , 2002 .

[48]  M. Doeff,et al.  7Li and 31P Magic Angle Spinning Nuclear Magnetic Resonance of LiFePO4-type materials , 2001 .

[49]  A. Yamada,et al.  Phase Diagram of Li x ( Mn y Fe1 − y ) PO 4 ( 0 ⩽ x , y ⩽ 1 ) , 2001 .

[50]  M. Whittingham,et al.  Hydrothermal synthesis of lithium iron phosphate cathodes , 2001 .

[51]  Sai-Cheong Chung,et al.  Crystal Chemistry of the Olivine-Type Li ( Mn y Fe1 − y ) PO 4 and ( Mn y Fe1 − y ) PO 4 as Possible 4 V Cathode Materials for Lithium Batteries , 2001 .

[52]  Sai-Cheong Chung,et al.  Optimized LiFePO4 for Lithium Battery Cathodes , 2001 .

[53]  S. Breschi,et al.  Knowledge Spillovers And Local Innovation Systems: A Critical Survey , 2001 .

[54]  John O. Thomas,et al.  Lithium extraction/insertion in LiFePO4: an X-ray diffraction and Mossbauer spectroscopy study , 2000 .

[55]  John O. Thomas,et al.  Thermal stability of LiFePO4-based cathodes , 1999 .

[56]  Daniel A. Levinthal The Slow Pace of Rapid Technological Change: Gradualism and Punctuation in Technological Change , 1998 .

[57]  John B. Goodenough,et al.  Effect of Structure on the Fe3 + / Fe2 + Redox Couple in Iron Phosphates , 1997 .

[58]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[59]  魏屹东,et al.  Scientometrics , 2018, Encyclopedia of Big Data.

[60]  Devendra Sahal,et al.  Technological guideposts and innovation avenues , 1993 .

[61]  F. Kodama Technology fusion and the new R & D: Harvard Business Review, 70 (4), 70–78 (July/August 1992) , 1993 .

[62]  K. Clark,et al.  Creating project plans to focus product development. , 1992, Harvard business review.

[63]  B. Dalum National Systems of Innovation: Towards a Theory of Innovation and Interactive Learning , 1992 .

[64]  M. Tushman,et al.  Technological Discontinuities and Dominant Designs: A Cyclical Model of Technological Change , 1990 .

[65]  Norman P. Hummon,et al.  Connectivity in a citation network: The development of DNA theory☆ , 1989 .

[66]  D. Lipman,et al.  Improved tools for biological sequence comparison. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[67]  David Sankoff,et al.  Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison , 1983 .

[68]  J. Kruskal An Overview of Sequence Comparison: Time Warps, String Edits, and Macromolecules , 1983 .

[69]  S. Winter,et al.  An evolutionary theory of economic change , 1983 .

[70]  G. Dosi Technological Paradigms and Technological Trajectories: A Suggested Interpretation of the Determinants and Directions of Technical Change , 1982 .

[71]  James M. Utterback,et al.  A dynamic model of process and product innovation , 1975 .

[72]  E. Garfield Citation analysis as a tool in journal evaluation. , 1972, Science.

[73]  Stephen J. Garland,et al.  Algorithm 97: Shortest path , 1962, Commun. ACM.

[74]  D. North Competing Technologies , Increasing Returns , and Lock-In by Historical Events , 1994 .