Wheeler–DeWitt equation and Lie symmetries in Bianchi scalar-field cosmology
暂无分享,去创建一个
[1] T. Christodoulakis,et al. Conditional symmetries in axisymmetric quantum cosmologies with scalar fields and the fate of the classical singularities , 2015, 1511.08382.
[2] J. Barrow,et al. Classical and Quantum Solutions in Brans-Dicke Cosmology with a Perfect Fluid , 2015, 1511.00439.
[3] J. Barrow,et al. Dynamical analysis in scalar field cosmology , 2015, 1503.05750.
[4] S. Capozziello,et al. Invariant solutions and Noether symmetries in Hybrid Gravity , 2014, 1407.4313.
[5] Y. Kucukakca. Teleparallel dark energy model with a fermionic field via Noether symmetry , 2014, 1407.1188.
[6] S. Capozziello,et al. New Schwarzschild-like solutions in f(T) gravity through Noether symmetries , 2014, 1402.5935.
[7] A. Paliathanasis,et al. The geometric origin of Lie point symmetries of the Schrödinger and the Klein–Gordon equations , 2013, 1312.3942.
[8] A. Barvinsky,et al. Selection rules for the Wheeler-DeWitt equation in quantum cosmology , 2013, 1312.3147.
[9] T. Christodoulakis,et al. FLRW metric f(R) cosmology with a perfect fluid by generating integrals of motion , 2013, 1311.4358.
[10] A. Paliathanasis,et al. The reduction of the Laplace equation in certain Riemannian spaces and the resulting Type II hidden symmetries , 2013, 1310.7084.
[11] T. Christodoulakis,et al. Lie point and variational symmetries in minisuperspace Einstein gravity , 2013, 1304.4359.
[12] G. Venturi,et al. Integrable cosmological models with non-minimally coupled scalar fields , 2013, 1312.3540.
[13] S. Capozziello,et al. Noether symmetries and analytical solutions in f(T)-cosmology: A complete study , 2013, 1311.2173.
[14] A. Aslam,et al. Noether gauge symmetry approach in quintom cosmology , 2013, 1308.2221.
[15] S. Capozziello,et al. Hybrid modified gravity unifying local tests, galactic dynamics and late-time cosmic acceleration , 2013, 1305.3756.
[16] G. M. Kremer,et al. Analysis of the nonminimally coupled scalar field in the Palatini formalism by the Noether symmetry approach , 2013, 1301.7711.
[17] M. Szydłowski,et al. Dynamics of the Bianchi I model with non-minimally coupled scalar field near the singularity , 2012, 1212.6408.
[18] S. Capozziello,et al. Cosmology of hybrid metric-Palatini f(X)-gravity , 2012, 1209.2895.
[19] E. Melas,et al. Conditional symmetries and the canonical quantization of constrained minisuperspace actions: The Schwarzschild case , 2012, 1208.0462.
[20] S. Capozziello,et al. Hamiltonian dynamics and Noether symmetries in Extended Gravity Cosmology , 2012, 1206.4842.
[21] A. Paliathanasis,et al. Generalizing the autonomous Kepler–Ermakov system in a Riemannian space , 2012, 1205.4114.
[22] I. Semiz,et al. LRS Bianchi type I universes exhibiting Noether symmetry in the scalar–tensor Brans-Dicke theory , 2012, 1204.6410.
[23] S. Capozziello,et al. New spherically symmetric solutions in f (R)-gravity by Noether symmetries , 2012, 1204.4650.
[24] Long-Fei Wang,et al. Noether Symmetry in $f(T)$ Theory , 2011, 1112.2270.
[25] T. Harko,et al. Metric-Palatini gravity unifying local constraints and late-time cosmic acceleration , 2011, 1110.1049.
[26] B. Vakili,et al. Noether symmetric classical and quantum scalar field cosmology , 2011, 1109.3352.
[27] A. Paliathanasis,et al. Constraints and analytical solutions of $f(R)$ theories of gravity using Noether symmetries , 2011, 1111.4547.
[28] S. Capozziello,et al. Extended Theories of Gravity , 2011, 1108.6266.
[29] A. Paliathanasis,et al. Using the Noether symmetry approach to probe the nature of dark energy , 2011, 1104.2980.
[30] A. Paliathanasis,et al. The geometric nature of Lie and Noether symmetries , 2011 .
[31] Y. Gong,et al. Noether symmetry approach in multiple scalar fields scenario , 2009, 0912.0067.
[32] S. Capozziello,et al. NOETHER SYMMETRY APPROACH IN PHANTOM QUINTESSENCE COSMOLOGY , 2009, 0908.2362.
[33] B. Vakili. Noether symmetric f(R) quantum cosmology and its classical correlations , 2008, 0809.4591.
[34] B. Abraham-Shrauner,et al. Type-II hidden symmetries of the linear 2D and 3D wave equations , 2006 .
[35] C. W. Kilmister,et al. Symmetry methods for differential equations: a beginners guide , by Peter E. Hydon. Pp. 213. £18.95 (paper), £50 (hardback). 2000. ISBN 0 521 49786 8 (paper) 0 521 49703 5 (hard) (Cambridge University Press). , 2001, The Mathematical Gazette.
[36] S. Capozziello,et al. Higher-Order Corrections to the Effective Gravitational Action from Noether Symmetry Approach , 1999, gr-qc/9912084.
[37] S. Cotsakis,et al. Symmetries of homogeneous cosmologies , 2000, gr-qc/0011017.
[38] S. Capozziello,et al. Nöther Symmetries in Bianchi Universes , 1996, gr-qc/9606050.
[39] S. Capozziello,et al. NÖTHER’S SYMMETRIES IN (n+1)-DIMENSIONAL NONMINIMALLY COUPLED COSMOLOGIES , 1993 .
[40] C. Rubano,et al. Scalar fields and anisotropy in cosmological models. , 1992, Physical review. D, Particles and fields.
[41] J. Barrow,et al. Inhomogeneous cosmologies with cosmological constant , 1984 .
[42] J. Barrow. The Isotropy of the Universe , 1982 .
[43] K. C. Jacobs. Spatially Homogeneous and Euclidean Cosmological Models with Shear , 1968 .
[44] E. Harrison. Quantum Cosmology , 2022, Nature.