Wheeler–DeWitt equation and Lie symmetries in Bianchi scalar-field cosmology

[1]  T. Christodoulakis,et al.  Conditional symmetries in axisymmetric quantum cosmologies with scalar fields and the fate of the classical singularities , 2015, 1511.08382.

[2]  J. Barrow,et al.  Classical and Quantum Solutions in Brans-Dicke Cosmology with a Perfect Fluid , 2015, 1511.00439.

[3]  J. Barrow,et al.  Dynamical analysis in scalar field cosmology , 2015, 1503.05750.

[4]  S. Capozziello,et al.  Invariant solutions and Noether symmetries in Hybrid Gravity , 2014, 1407.4313.

[5]  Y. Kucukakca Teleparallel dark energy model with a fermionic field via Noether symmetry , 2014, 1407.1188.

[6]  S. Capozziello,et al.  New Schwarzschild-like solutions in f(T) gravity through Noether symmetries , 2014, 1402.5935.

[7]  A. Paliathanasis,et al.  The geometric origin of Lie point symmetries of the Schrödinger and the Klein–Gordon equations , 2013, 1312.3942.

[8]  A. Barvinsky,et al.  Selection rules for the Wheeler-DeWitt equation in quantum cosmology , 2013, 1312.3147.

[9]  T. Christodoulakis,et al.  FLRW metric f(R) cosmology with a perfect fluid by generating integrals of motion , 2013, 1311.4358.

[10]  A. Paliathanasis,et al.  The reduction of the Laplace equation in certain Riemannian spaces and the resulting Type II hidden symmetries , 2013, 1310.7084.

[11]  T. Christodoulakis,et al.  Lie point and variational symmetries in minisuperspace Einstein gravity , 2013, 1304.4359.

[12]  G. Venturi,et al.  Integrable cosmological models with non-minimally coupled scalar fields , 2013, 1312.3540.

[13]  S. Capozziello,et al.  Noether symmetries and analytical solutions in f(T)-cosmology: A complete study , 2013, 1311.2173.

[14]  A. Aslam,et al.  Noether gauge symmetry approach in quintom cosmology , 2013, 1308.2221.

[15]  S. Capozziello,et al.  Hybrid modified gravity unifying local tests, galactic dynamics and late-time cosmic acceleration , 2013, 1305.3756.

[16]  G. M. Kremer,et al.  Analysis of the nonminimally coupled scalar field in the Palatini formalism by the Noether symmetry approach , 2013, 1301.7711.

[17]  M. Szydłowski,et al.  Dynamics of the Bianchi I model with non-minimally coupled scalar field near the singularity , 2012, 1212.6408.

[18]  S. Capozziello,et al.  Cosmology of hybrid metric-Palatini f(X)-gravity , 2012, 1209.2895.

[19]  E. Melas,et al.  Conditional symmetries and the canonical quantization of constrained minisuperspace actions: The Schwarzschild case , 2012, 1208.0462.

[20]  S. Capozziello,et al.  Hamiltonian dynamics and Noether symmetries in Extended Gravity Cosmology , 2012, 1206.4842.

[21]  A. Paliathanasis,et al.  Generalizing the autonomous Kepler–Ermakov system in a Riemannian space , 2012, 1205.4114.

[22]  I. Semiz,et al.  LRS Bianchi type I universes exhibiting Noether symmetry in the scalar–tensor Brans-Dicke theory , 2012, 1204.6410.

[23]  S. Capozziello,et al.  New spherically symmetric solutions in f (R)-gravity by Noether symmetries , 2012, 1204.4650.

[24]  Long-Fei Wang,et al.  Noether Symmetry in $f(T)$ Theory , 2011, 1112.2270.

[25]  T. Harko,et al.  Metric-Palatini gravity unifying local constraints and late-time cosmic acceleration , 2011, 1110.1049.

[26]  B. Vakili,et al.  Noether symmetric classical and quantum scalar field cosmology , 2011, 1109.3352.

[27]  A. Paliathanasis,et al.  Constraints and analytical solutions of $f(R)$ theories of gravity using Noether symmetries , 2011, 1111.4547.

[28]  S. Capozziello,et al.  Extended Theories of Gravity , 2011, 1108.6266.

[29]  A. Paliathanasis,et al.  Using the Noether symmetry approach to probe the nature of dark energy , 2011, 1104.2980.

[30]  A. Paliathanasis,et al.  The geometric nature of Lie and Noether symmetries , 2011 .

[31]  Y. Gong,et al.  Noether symmetry approach in multiple scalar fields scenario , 2009, 0912.0067.

[32]  S. Capozziello,et al.  NOETHER SYMMETRY APPROACH IN PHANTOM QUINTESSENCE COSMOLOGY , 2009, 0908.2362.

[33]  B. Vakili Noether symmetric f(R) quantum cosmology and its classical correlations , 2008, 0809.4591.

[34]  B. Abraham-Shrauner,et al.  Type-II hidden symmetries of the linear 2D and 3D wave equations , 2006 .

[35]  C. W. Kilmister,et al.  Symmetry methods for differential equations: a beginners guide , by Peter E. Hydon. Pp. 213. £18.95 (paper), £50 (hardback). 2000. ISBN 0 521 49786 8 (paper) 0 521 49703 5 (hard) (Cambridge University Press). , 2001, The Mathematical Gazette.

[36]  S. Capozziello,et al.  Higher-Order Corrections to the Effective Gravitational Action from Noether Symmetry Approach , 1999, gr-qc/9912084.

[37]  S. Cotsakis,et al.  Symmetries of homogeneous cosmologies , 2000, gr-qc/0011017.

[38]  S. Capozziello,et al.  Nöther Symmetries in Bianchi Universes , 1996, gr-qc/9606050.

[39]  S. Capozziello,et al.  NÖTHER’S SYMMETRIES IN (n+1)-DIMENSIONAL NONMINIMALLY COUPLED COSMOLOGIES , 1993 .

[40]  C. Rubano,et al.  Scalar fields and anisotropy in cosmological models. , 1992, Physical review. D, Particles and fields.

[41]  J. Barrow,et al.  Inhomogeneous cosmologies with cosmological constant , 1984 .

[42]  J. Barrow The Isotropy of the Universe , 1982 .

[43]  K. C. Jacobs Spatially Homogeneous and Euclidean Cosmological Models with Shear , 1968 .

[44]  E. Harrison Quantum Cosmology , 2022, Nature.