Volume and size effects of intermetallic compounds on the high-temperature oxidation behavior of Mo-Si-B alloys

[1]  M. Suk,et al.  Microstructure control of Mo–Si–B alloy for formation of continuous α-Mo phase , 2015 .

[2]  M. Suk,et al.  Structural size effects of intermetallic compounds on the mechanical properties of Mo-Si-B alloy: An experimental investigation , 2015, Metals and Materials International.

[3]  Young Do Kim,et al.  Fabrication of Mo–Si–B intermetallic powder by mechano-chemical process , 2014 .

[4]  R. Ritchie,et al.  Mo‐Si‐B Alloys for Ultrahigh‐Temperature Structural Applications , 2004, Advanced materials.

[5]  J. Banhart,et al.  Phase continuity in high temperature Mo–Si–B alloys: A FIB-Tomography Study , 2011 .

[6]  J. Cochran,et al.  The microstructural engineering of Mo-Si-B alloys produced by reaction synthesis , 2010 .

[7]  R. Sakidja,et al.  Transient oxidation of Mo–Si–B alloys: Effect of the microstructure size scale , 2009 .

[8]  M. Böning,et al.  Mechanically alloyed Mo–Si–B alloys with a continuous α-Mo matrix and improved mechanical properties , 2008 .

[9]  D. Dimiduk,et al.  Mo-Si-B Alloys: Developing a Revolutionary Turbine-Engine Material , 2003 .

[10]  M. Kramer,et al.  A Mo–Si–B intermetallic alloy with a continuous α-Mo matrix , 2002 .

[11]  R. N. Wright,et al.  Processing and mechanical properties of a molybdenum silicide with the composition Mo–12Si–8.5B (at.%) , 2001 .

[12]  T. Nieh,et al.  Deformation of a multiphase Mo–9.4Si–13.8B alloy at elevated temperatures , 2001 .

[13]  M. Kramer,et al.  Boron-doped molybdenum silicides for structural applications , 1999 .

[14]  M. Kramer,et al.  Assessment of processing routes and strength of a 3-phase molybdenum boron silicide (Mo5Si3-Mo5SiB2-Mo3Si) , 1998 .

[15]  M. Kramer,et al.  Boron‐doped molybdenum silicides , 1996 .

[16]  R. Snyder,et al.  RIR - Measurement and Use in Quantitative XRD , 1988, Powder Diffraction.