Filter bank frame expansions with erasures
暂无分享,去创建一个
Vivek K. Goyal | Jelena Kovacevic | Vivek K Goyal | Pier Luigi Dragotti | J. Kovacevic | P. Dragotti
[1] Robert M. Gray,et al. Source coding for a simple network , 1974 .
[2] Ingrid Daubechies,et al. The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.
[3] Edward H. Adelson,et al. The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..
[4] Sundeep Rangan,et al. Recursive consistent estimation with bounded noise , 2001, IEEE Trans. Inf. Theory.
[5] R. Duffin,et al. A class of nonharmonic Fourier series , 1952 .
[6] Peter G. Casazza,et al. Modern tools for weyl-heisenberg (gabor) frame theory , 2001 .
[7] Deguang Han,et al. Frames, bases, and group representations , 2000 .
[8] Martin Vetterli,et al. Oversampled filter banks , 1998, IEEE Trans. Signal Process..
[9] Christopher Heil,et al. Continuous and Discrete Wavelet Transforms , 1989, SIAM Rev..
[10] I. Daubechies,et al. PAINLESS NONORTHOGONAL EXPANSIONS , 1986 .
[11] Aaron D. Wyner,et al. The rate-distortion function for source coding with side information at the decoder , 1976, IEEE Trans. Inf. Theory.
[12] Vivek K. Goyal,et al. Quantized Frame Expansions with Erasures 1 , 2001 .
[13] Vivek K Goyal,et al. Multiple description transform coding: robustness to erasures using tight frame expansions , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).
[14] Kannan Ramchandran,et al. Optimal subband filter banks for multiple description coding , 2000, IEEE Trans. Inf. Theory.
[15] Yonina C. Eldar,et al. Optimal tight frames and quantum measurement , 2002, IEEE Trans. Inf. Theory.
[16] Aaron D. Wyner,et al. On source coding with side information at the decoder , 1975, IEEE Trans. Inf. Theory.
[17] Jelena Kovacevic,et al. Uniform tight frames for signal processing and communication , 2001, SPIE Optics + Photonics.
[18] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[19] A. Wyner,et al. Source coding for multiple descriptions , 1980, The Bell System Technical Journal.
[20] Helmut Bölcskei,et al. Frame-theoretic analysis of oversampled filter banks , 1998, IEEE Trans. Signal Process..
[21] P. Casazza,et al. Uniform Tight Frames with Erasures , 2004 .
[22] Vivek K. Goyal,et al. Quantized Overcomplete Expansions in IRN: Analysis, Synthesis, and Algorithms , 1998, IEEE Trans. Inf. Theory.
[23] P. Vaidyanathan. Multirate Systems And Filter Banks , 1992 .
[24] Martin Vetterli,et al. Optimal filter banks for multiple description coding: Analysis and synthesis , 2002, IEEE Trans. Inf. Theory.
[25] Yonina C. Eldar,et al. Geometrically uniform frames , 2001, IEEE Trans. Inf. Theory.
[26] Vivek K Goyal,et al. Quantized Frame Expansions with Erasures , 2001 .
[27] Zoran Cvetkovic. Resilience properties of redundant expansions under additive noise and quantization , 2003, IEEE Trans. Inf. Theory.
[28] Michael Unser,et al. Texture classification and segmentation using wavelet frames , 1995, IEEE Trans. Image Process..
[29] T. Strohmer. Finite-and Infinite-Dimensional Models for Oversampled Filter Banks , 2001 .
[30] Vivek K. Goyal,et al. Multiple description coding: compression meets the network , 2001, IEEE Signal Process. Mag..
[31] Jelena Kovacevic,et al. Quantized frame expansions in a wireless environment , 2002, Proceedings DCC 2002. Data Compression Conference.
[32] P. Casazza. THE ART OF FRAME THEORY , 1999, math/9910168.
[33] John J. Benedetto,et al. Wavelet periodicity detection algorithms , 1998, Optics & Photonics.
[34] H. Witsenhausen,et al. Source coding for multiple descriptions II: A binary source , 1981, The Bell System Technical Journal.
[35] I. M. Glazman,et al. Theory of linear operators in Hilbert space , 1961 .
[36] Thomas L. Marzetta,et al. Systematic design of unitary space-time constellations , 2000, IEEE Trans. Inf. Theory.