Filter bank frame expansions with erasures

We study frames for robust transmission over the Internet. In our previous work, we used quantized finite-dimensional frames to achieve resilience to packet losses; here, we allow the input to be a sequence in l/sub 2/(Z) and focus on a filter-bank implementation of the system. We present results in parallel, R/sup N/ or C/sup N/ versus l/sub 2/(Z), and show that uniform tight frames, as well as newly introduced strongly uniform tight frames, provide the best performance.

[1]  Robert M. Gray,et al.  Source coding for a simple network , 1974 .

[2]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.

[3]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[4]  Sundeep Rangan,et al.  Recursive consistent estimation with bounded noise , 2001, IEEE Trans. Inf. Theory.

[5]  R. Duffin,et al.  A class of nonharmonic Fourier series , 1952 .

[6]  Peter G. Casazza,et al.  Modern tools for weyl-heisenberg (gabor) frame theory , 2001 .

[7]  Deguang Han,et al.  Frames, bases, and group representations , 2000 .

[8]  Martin Vetterli,et al.  Oversampled filter banks , 1998, IEEE Trans. Signal Process..

[9]  Christopher Heil,et al.  Continuous and Discrete Wavelet Transforms , 1989, SIAM Rev..

[10]  I. Daubechies,et al.  PAINLESS NONORTHOGONAL EXPANSIONS , 1986 .

[11]  Aaron D. Wyner,et al.  The rate-distortion function for source coding with side information at the decoder , 1976, IEEE Trans. Inf. Theory.

[12]  Vivek K. Goyal,et al.  Quantized Frame Expansions with Erasures 1 , 2001 .

[13]  Vivek K Goyal,et al.  Multiple description transform coding: robustness to erasures using tight frame expansions , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[14]  Kannan Ramchandran,et al.  Optimal subband filter banks for multiple description coding , 2000, IEEE Trans. Inf. Theory.

[15]  Yonina C. Eldar,et al.  Optimal tight frames and quantum measurement , 2002, IEEE Trans. Inf. Theory.

[16]  Aaron D. Wyner,et al.  On source coding with side information at the decoder , 1975, IEEE Trans. Inf. Theory.

[17]  Jelena Kovacevic,et al.  Uniform tight frames for signal processing and communication , 2001, SPIE Optics + Photonics.

[18]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[19]  A. Wyner,et al.  Source coding for multiple descriptions , 1980, The Bell System Technical Journal.

[20]  Helmut Bölcskei,et al.  Frame-theoretic analysis of oversampled filter banks , 1998, IEEE Trans. Signal Process..

[21]  P. Casazza,et al.  Uniform Tight Frames with Erasures , 2004 .

[22]  Vivek K. Goyal,et al.  Quantized Overcomplete Expansions in IRN: Analysis, Synthesis, and Algorithms , 1998, IEEE Trans. Inf. Theory.

[23]  P. Vaidyanathan Multirate Systems And Filter Banks , 1992 .

[24]  Martin Vetterli,et al.  Optimal filter banks for multiple description coding: Analysis and synthesis , 2002, IEEE Trans. Inf. Theory.

[25]  Yonina C. Eldar,et al.  Geometrically uniform frames , 2001, IEEE Trans. Inf. Theory.

[26]  Vivek K Goyal,et al.  Quantized Frame Expansions with Erasures , 2001 .

[27]  Zoran Cvetkovic Resilience properties of redundant expansions under additive noise and quantization , 2003, IEEE Trans. Inf. Theory.

[28]  Michael Unser,et al.  Texture classification and segmentation using wavelet frames , 1995, IEEE Trans. Image Process..

[29]  T. Strohmer Finite-and Infinite-Dimensional Models for Oversampled Filter Banks , 2001 .

[30]  Vivek K. Goyal,et al.  Multiple description coding: compression meets the network , 2001, IEEE Signal Process. Mag..

[31]  Jelena Kovacevic,et al.  Quantized frame expansions in a wireless environment , 2002, Proceedings DCC 2002. Data Compression Conference.

[32]  P. Casazza THE ART OF FRAME THEORY , 1999, math/9910168.

[33]  John J. Benedetto,et al.  Wavelet periodicity detection algorithms , 1998, Optics & Photonics.

[34]  H. Witsenhausen,et al.  Source coding for multiple descriptions II: A binary source , 1981, The Bell System Technical Journal.

[35]  I. M. Glazman,et al.  Theory of linear operators in Hilbert space , 1961 .

[36]  Thomas L. Marzetta,et al.  Systematic design of unitary space-time constellations , 2000, IEEE Trans. Inf. Theory.