Market price of risk speci-fications for a ne models: theory and evidence

[1]  W. Feller TWO SINGULAR DIFFUSION PROBLEMS , 1951 .

[2]  J. McCulloch,et al.  THE TAX-ADJUSTED YIELD CURVE , 1975 .

[3]  Oldrich A. Vasicek An equilibrium characterization of the term structure , 1977 .

[4]  David M. Kreps,et al.  Martingales and arbitrage in multiperiod securities markets , 1979 .

[5]  J. Harrison,et al.  Martingales and stochastic integrals in the theory of continuous trading , 1981 .

[6]  池田 信行,et al.  Stochastic differential equations and diffusion processes , 1981 .

[7]  L. Rogers Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .

[8]  F. Fabozzi Advances in Futures and Options Research , 1987 .

[9]  J. Ingersoll Theory of Financial Decision Making , 1987 .

[10]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[11]  D. Beaglehole,et al.  General Solutions of Some Interest Rate-Contingent Claim Pricing Equations , 1991 .

[12]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[13]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .

[14]  J. Huston McCulloch,et al.  U.S. term structure data, 1947-1991 , 1993 .

[15]  F. Delbaen,et al.  A general version of the fundamental theorem of asset pricing , 1994 .

[16]  D. Duffie,et al.  A Yield-factor Model of Interest Rates , 1996 .

[17]  R. Sundaram,et al.  A Simple Approach to Three-Factor Affine Term Structure Models , 1996 .

[18]  K. Singleton,et al.  Specification Analysis of Affine Term Structure Models , 1997 .

[19]  F. Delbaen,et al.  The fundamental theorem of asset pricing for unbounded stochastic processes , 1998 .

[20]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options , 1998 .

[21]  E. Ghysels,et al.  A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation , 2000 .

[22]  Nicholas G. Polson,et al.  The Impact of Jumps in Volatility and Returns , 2000 .

[23]  Michael W. Brandt,et al.  Simulated Likelihood Estimation of Diffusions with an Application to Exchange Rate Dynamics in Incomplete Markets , 2001 .

[24]  G. Duffee Term premia and interest rate forecasts in affine models , 2000 .

[25]  Yacine Ait-Sahalia Closed-Form Likelihood Expansions for Multivariate Diffusions , 2002, 0804.0758.

[26]  D. Duffie,et al.  Affine Processes and Application in Finance , 2002 .

[27]  S. Levendorskii Consistency Conditions for Affine Term Structure Models Ii. Option Pricing Under Diffusions with Embedded Jumps , 2004 .

[28]  T. Alderweireld,et al.  A Theory for the Term Structure of Interest Rates , 2004, cond-mat/0405293.

[29]  Consistency conditions for affine term structure models , 2004, cond-mat/0404107.

[30]  M. Yor,et al.  Equivalent and absolutely continuous measure changes for jump-diffusion processes , 2005, math/0508450.

[31]  Ping He,et al.  Simulated Likelihood Estimation of Affine Term Structure Models from Panel Data , 2006 .