Improved electrochemical performance of P2-type concentration-gradient cathode material Na0.65Ni0.16Co0.14Mn0.7O2 with Mn-rich core for sodium-ion batteries

[1]  Yu Cao,et al.  Defect Engineering in Prussian Blue Analogs for High‐Performance Sodium‐Ion Batteries , 2022, Advanced Energy Materials.

[2]  Yang‐Kook Sun,et al.  Microstructure-optimized concentration-gradient NCM cathode for long-life Li-ion batteries , 2021, Materials Today.

[3]  Yongfu Tang,et al.  Degradation by Kinking in Layered Cathode Materials , 2021, ACS Energy Letters.

[4]  Tongchao Liu,et al.  Rational design of mechanically robust Ni-rich cathode materials via concentration gradient strategy , 2021, Nature Communications.

[5]  Man Van Tran,et al.  Electrochemical Properties and Ex Situ Study of Sodium Intercalation Cathode P2/P3-NaNi1/3Mn1/3Co1/3O2 , 2021, Journal of Chemistry.

[6]  Jing Mao,et al.  Review—Research Progress on Layered Transition Metal Oxide Cathode Materials for Sodium Ion Batteries , 2021 .

[7]  Chenghao Yang,et al.  Nanoscale surface modification of P2-type Na0.65[Mn0.70Ni0.16Co0.14]O2 cathode material for high-performance sodium-ion batteries , 2021 .

[8]  Bin Huang,et al.  Effects of calcination temperature on electrochemical properties of cathode material Na4MnV(PO4)3/C synthesized by sol-gel method for sodium-ion batteries , 2021 .

[9]  G. Ceder,et al.  Promises and Challenges of Next-Generation "Beyond Li-ion" Batteries for Electric Vehicles and Grid Decarbonization. , 2020, Chemical reviews.

[10]  Bin Huang,et al.  Dually Decorated Na 3 V 2 (PO 4 ) 2 F 3 by Carbon and 3D Graphene as Cathode Material for Sodium‐Ion Batteries with High Energy and Power Densities , 2020, ChemElectroChem.

[11]  N. Palaniyandy Recent developments on layered 3d-transtition metal oxide cathode materials for sodium-ion batteries , 2020, Current Opinion in Electrochemistry.

[12]  G. Cao,et al.  Layered ternary metal oxides: Performance degradation mechanisms as cathodes, and design strategies for high-performance batteries , 2020 .

[13]  Jiujun Zhang,et al.  Trace Nb-doped Na0.7Ni0.3Co0.1Mn0.6O2 with suppressed voltage decay and enhanced low temperature performance , 2020 .

[14]  Sen Xin,et al.  Materials Design for High‐Safety Sodium‐Ion Battery , 2020, Advanced Energy Materials.

[15]  Ya‐Xia Yin,et al.  Layered Oxide Cathodes Promoted by Structure Modulation Technology for Sodium‐Ion Batteries , 2020, Advanced Functional Materials.

[16]  Yang‐Kook Sun Direction for Commercialization of O3-Type Layered Cathodes for Sodium-Ion Batteries , 2020 .

[17]  Lifang Jiao,et al.  Polyanion-type cathode materials for sodium-ion batteries. , 2020, Chemical Society reviews.

[18]  Chenglong Zhao,et al.  Revealing High Na-Content P2-Type Layered Oxides as Advanced Sodium-Ion Cathodes , 2020, Journal of the American Chemical Society.

[19]  Mao-wen Xu,et al.  Low‐Operating Temperature, High‐Rate and Durable Solid‐State Sodium‐Ion Battery Based on Polymer Electrolyte and Prussian Blue Cathode , 2019, Advanced Energy Materials.

[20]  S. Dou,et al.  Recent Progress of Layered Transition Metal Oxide Cathodes for Sodium-Ion Batteries. , 2019, Small.

[21]  Xing-long Wu,et al.  P2-type Na2/3Mn1/2Co1/3Cu1/6O2 as advanced cathode material for sodium-ion batteries: Electrochemical properties and electrode kinetics , 2019, Journal of Alloys and Compounds.

[22]  Haoshen Zhou,et al.  Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage , 2019, Energy & Environmental Science.

[23]  Xiaolong Deng,et al.  A high energy-density P2-Na2/3[Ni0.3Co0.1Mn0.6]O2 cathode with mitigated P2-O2 transition for sodium-ion batteries. , 2019, Nanoscale.

[24]  C. Yoon,et al.  Capacity Degradation Mechanism and Cycling Stability Enhancement of AlF3-Coated Nanorod Gradient Na[Ni0.65Co0.08Mn0.27]O2 Cathode for Sodium-Ion Batteries. , 2018, ACS nano.

[25]  Peng Ge,et al.  Ultrafast Sodium Full Batteries Derived from XFe (X = Co, Ni, Mn) Prussian Blue Analogs , 2018, Advanced materials.

[26]  Shao‐hua Luo,et al.  Novel P2-type concentration-gradient Na0.67Ni0.167Co0.167Mn0.67O2 modified by Mn-rich surface as cathode material for sodium ion batteries , 2018, Journal of Power Sources.

[27]  Zhouguang Lu,et al.  Improvement in electrochemical performance of Na3V2(PO4)3/C cathode material for sodium-ion batteries by K-Ca co-doping , 2018, Electrochimica Acta.

[28]  Chen Wu,et al.  Prussian Blue Cathode Materials for Sodium‐Ion Batteries and Other Ion Batteries , 2018 .

[29]  Yu-Guo Guo,et al.  Layered Oxide Cathodes for Sodium‐Ion Batteries: Phase Transition, Air Stability, and Performance , 2018 .

[30]  M. Jamesh,et al.  Advancement of technology towards developing Na-ion batteries , 2018 .

[31]  Wolfgang Brehm,et al.  Von Lithium- zu Natriumionenbatterien: Vorteile, Herausforderungen und Überraschendes , 2018 .

[32]  D. Aurbach,et al.  Microsphere Na0.65[Ni0.17Co0.11Mn0.72]O2 Cathode Material for High-Performance Sodium-Ion Batteries. , 2017, ACS applied materials & interfaces.

[33]  N. Sharma,et al.  Structure–Electrochemical Evolution of a Mn-Rich P2 Na2/3Fe0.2Mn0.8O2 Na-Ion Battery Cathode , 2017 .

[34]  Jang‐Yeon Hwang,et al.  Sodium-ion batteries: present and future. , 2017, Chemical Society reviews.

[35]  J. Locquet,et al.  Enhanced electrochemical performance of Na2/3[Mn0.55Ni0.30Co0.15]O2 positive electrode in sodium-ion batteries by functionalized multi-walled carbon nanotubes , 2017 .

[36]  Chun‐Sing Lee,et al.  P2-Type NaxCu0.15Ni0.20Mn0.65O2 Cathodes with High Voltage for High-Power and Long-Life Sodium-Ion Batteries. , 2016, ACS applied materials & interfaces.

[37]  Fenghua Li,et al.  Improved performances of a LiNi0.6Co0.15Mn0.25O2 cathode material with full concentration-gradient for lithium ion batteries , 2016 .

[38]  Chong Seung Yoon,et al.  Novel Cathode Materials for Na‐Ion Batteries Composed of Spoke‐Like Nanorods of Na[Ni0.61Co0.12Mn0.27]O2 Assembled in Spherical Secondary Particles , 2016 .

[39]  Chongwu Zhou,et al.  Layered P2-Na2/3[Ni1/3Mn2/3]O2 as high-voltage cathode for sodium-ion batteries: The capacity decay mechanism and Al2O3 surface modification , 2016 .

[40]  Zhen Zhou,et al.  A P2-Na0.67Co0.5Mn0.5O2 cathode material with excellent rate capability and cycling stability for sodium ion batteries , 2016 .

[41]  M. Shaijumon,et al.  Layered P2-type Na0.5Ni0.25Mn0.75O2 as a high performance cathode material for sodium-ion batteries , 2016 .

[42]  Zhongbo Hu,et al.  Unveiling the Role of Co in Improving the High-Rate Capability and Cycling Performance of Layered Na0.7Mn0.7Ni0.3-xCoxO2 Cathode Materials for Sodium-Ion Batteries. , 2016, ACS applied materials & interfaces.

[43]  Jiulin Wang,et al.  Highly Crystallized Na₂CoFe(CN)₆ with Suppressed Lattice Defects as Superior Cathode Material for Sodium-Ion Batteries. , 2016, ACS applied materials & interfaces.

[44]  Hun‐Gi Jung,et al.  A high-capacity Li[Ni0.8Co0.06Mn0.14]O2 positive electrode with a dual concentration gradient for next-generation lithium-ion batteries , 2015 .

[45]  R. Li,et al.  Highly stable Na2/3 (Mn0.54 Ni0.13 Co0.13 )O2 cathode modified by atomic layer deposition for sodium-ion batteries. , 2015, ChemSusChem.

[46]  Ilias Belharouak,et al.  Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries , 2015, Nature Communications.

[47]  Lianqi Zhang,et al.  A high-energy, full concentration-gradient cathode material with excellent cycle and thermal stability for lithium ion batteries , 2014 .

[48]  A. Balducci,et al.  Determination of sodium ion diffusion coefficients in sodium vanadium phosphate , 2014, Journal of Solid State Electrochemistry.

[49]  Jean-Marie Tarascon,et al.  Synthesis, Structure, and Electrochemical Properties of the Layered Sodium Insertion Cathode Material: NaNi1/3Mn1/3Co1/3O2 , 2012 .

[50]  Li Liu,et al.  Electrochemical performance of Li3−xNaxV2(PO4)3/C composite cathode materials for lithium ion batteries , 2012 .

[51]  Chong Seung Yoon,et al.  A Novel Cathode Material with a Concentration‐Gradient for High‐Energy and Safe Lithium‐Ion Batteries , 2010 .

[52]  A. Mauger,et al.  Synthesis and Characterization of LiNi1/3Mn1/3Co1/3O2 by Wet-Chemical Method , 2009, ECS Transactions.

[53]  G. Davies,et al.  Electrodeposition of Metal Alloy and Mixed Oxide Films Using a Single‐Precursor Tetranuclear Copper‐Nickel Complex , 1995 .

[54]  A. Mansour,et al.  Characterization of Electrochemically Prepared γ‐NiOOH by XPS , 1994 .

[55]  A. Mansour Characterization of NiO by XPS , 1994 .

[56]  F. R. Brown,et al.  Surface spectroscopic study of tungsten-alumina catalysts using x-ray photoelectron, ion scattering, and Raman spectroscopies , 1980 .

[57]  R. Huggins,et al.  Determination of the Kinetic Parameters of Mixed‐Conducting Electrodes and Application to the System Li3Sb , 1977 .

[58]  K. Kishi Adsorption of ethylenediamine on clean and oxygen covered Fe/Ni(100) surfaces studied by XPS , 1988 .

[59]  V. Nefedov,et al.  Esca investigations of some NiO/SiO2 and NiO—Al2 O3 /SiO2 catalysts , 1979 .