Recycling augmented Lagrangian preconditioner in an incompressible fluid solver

The paper discusses a reuse of matrix factorization as a building block in the Augmented Lagrangian (AL) and modified AL preconditioners for nonsymmetric saddle point linear algebraic systems. The strategy is applied to solve two‐dimensional incompressible fluid problems with efficiency rates independent of the Reynolds number. The solver is then tested to simulate motion of a surface fluid, an example of a two‐dimensional flow motivated by an interest in lateral fluidity of inextensible viscous membranes. Numerical examples include the Kelvin–Helmholtz instability problem posed on the sphere and on the torus. Some new eigenvalue estimates for the AL preconditioner are derived.

[1]  I. Bendixson,et al.  Sur les racines d'une équation fondamentale , 1902 .

[2]  Morton E. Gurtin,et al.  A continuum theory of elastic material surfaces , 1975 .

[3]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[4]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[5]  J. Cahouet,et al.  Some fast 3D finite element solvers for the generalized Stokes problem , 1988 .

[6]  O. Dahl,et al.  An ILU preconditioner with coupled node fill‐in for iterative solution of the mixed finite element formulation of the 2D and 3D Navier‐Stokes equations , 1992 .

[7]  M. Olshanskii A low order Galerkin finite element method for the Navier–Stokes equations of steady incompressible flow: a stabilization issue and iterative methods , 2002 .

[8]  Maxim A. Olshanskii,et al.  Grad-div stablilization for Stokes equations , 2003, Math. Comput..

[9]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[10]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[11]  Maxim A. Olshanskii,et al.  An Augmented Lagrangian-Based Approach to the Oseen Problem , 2006, SIAM J. Sci. Comput..

[12]  A. de Niet,et al.  Two preconditioners for saddle point problems in fluid flows , 2007 .

[13]  C. Vuik,et al.  A comparison of preconditioners for incompressible Navier–Stokes solvers , 2008 .

[14]  Maxim A. Olshanskii,et al.  An Augmented Lagrangian Approach to Linearized Problems in Hydrodynamic Stability , 2008, SIAM J. Sci. Comput..

[15]  Maxim A. Olshanskii,et al.  A Finite Element Method for Elliptic Equations on Surfaces , 2009, SIAM J. Numer. Anal..

[16]  Maxim A. Olshanskii,et al.  Grad–div stabilization and subgrid pressure models for the incompressible Navier–Stokes equations , 2009 .

[17]  Volker John,et al.  Numerical Studies of Finite Element Variational Multiscale Methods for Turbulent Flow Simulations , 2010 .

[18]  Segal,et al.  Preconditioners for Incompressible Navier-Stokes Solvers , 2010 .

[19]  M. Benzi,et al.  INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids (2010) Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.2267 Modified augmented Lagrangian preconditioners for the incompressible Navier , 2022 .

[20]  S. Capizzano,et al.  On an augmented Lagrangian-based preconditioning of Oseen type problems , 2011 .

[21]  Zhen Wang,et al.  Analysis of Augmented Lagrangian-Based Preconditioners for the Steady Incompressible Navier-Stokes Equations , 2011, SIAM J. Sci. Comput..

[22]  INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS , 2012 .

[23]  S. Börm,et al.  ℋ︁‐LU factorization in preconditioners for augmented Lagrangian and grad‐div stabilized saddle point systems , 2012 .

[24]  I. Nitschke,et al.  A finite element approach to incompressible two-phase flow on manifolds , 2012, Journal of Fluid Mechanics.

[25]  Peter Hansbo,et al.  A stabilized cut finite element method for partial differential equations on surfaces: The Laplace–Beltrami operator , 2013, 1312.1097.

[26]  Padmini Rangamani,et al.  Interaction between surface shape and intra-surface viscous flow on lipid membranes , 2012, Biomechanics and Modeling in Mechanobiology.

[27]  G. Rapin,et al.  Efficient augmented Lagrangian‐type preconditioning for the Oseen problem using Grad‐Div stabilization , 2013 .

[28]  Christoph Lehrenfeld,et al.  High order unfitted finite element methods on level set domains using isoparametric mappings , 2015, ArXiv.

[29]  Peter Hansbo,et al.  A cut discontinuous Galerkin method for the Laplace-Beltrami operator , 2015, 1507.05835.

[30]  Maxim A. Olshanskii,et al.  ILU Preconditioners for Nonsymmetric Saddle-Point Matrices with Application to the Incompressible Navier-Stokes Equations , 2015, SIAM J. Sci. Comput..

[31]  Maxim A. Olshanskii,et al.  Trace Finite Element Methods for PDEs on Surfaces , 2016, 1612.00054.

[32]  Thomas-Peter Fries,et al.  Higher‐order surface FEM for incompressible Navier‐Stokes flows on manifolds , 2017, ArXiv.

[33]  Axel Voigt,et al.  Solving the incompressible surface Navier-Stokes equation by surface finite elements , 2017, 1709.02803.

[34]  Maxim A. Olshanskii,et al.  LU factorizations and ILU preconditioning for stabilized discretizations of incompressible Navier-Stokes equations , 2017, Numer. Linear Algebra Appl..

[35]  Christoph Lehrenfeld,et al.  Analysis of a High-Order Trace Finite Element Method for PDEs on Level Set Surfaces , 2016, SIAM J. Numer. Anal..

[36]  Maxim A. Olshanskii,et al.  Incompressible fluid problems on embedded surfaces: Modeling and variational formulations , 2017, Interfaces and Free Boundaries.

[37]  Maxim A. Olshanskii,et al.  A Finite Element Method for the Surface Stokes Problem , 2018, SIAM J. Sci. Comput..

[38]  Peter Hansbo,et al.  Cut finite element methods for partial differential equations on embedded manifolds of arbitrary codimensions , 2016, ESAIM: Mathematical Modelling and Numerical Analysis.

[39]  Xin He,et al.  Combining the Augmented Lagrangian Preconditioner with the Simple Schur Complement Approximation , 2018, SIAM J. Sci. Comput..

[40]  Christoph Lehrenfeld,et al.  On reference solutions and the sensitivity of the 2D Kelvin-Helmholtz instability problem , 2018, Comput. Math. Appl..

[41]  O. Marquet,et al.  Augmented Lagrangian preconditioner for large-scale hydrodynamic stability analysis , 2019, Computer Methods in Applied Mechanics and Engineering.

[42]  Axel Voigt,et al.  Hydrodynamic interactions in polar liquid crystals on evolving surfaces , 2018, Physical Review Fluids.

[43]  Arnold Reusken,et al.  Finite Element Error Analysis of Surface Stokes Equations in Stream Function Formulation , 2019, ArXiv.

[44]  Maxim A. Olshanskii,et al.  A Penalty Finite Element Method for a Fluid System Posed on Embedded Surface , 2018, Journal of Mathematical Fluid Mechanics.

[45]  Lawrence Mitchell,et al.  An Augmented Lagrangian Preconditioner for the 3D Stationary Incompressible Navier-Stokes Equations at High Reynolds Number , 2018, SIAM J. Sci. Comput..

[46]  M. Arroyo,et al.  Modelling fluid deformable surfaces with an emphasis on biological interfaces , 2018, Journal of Fluid Mechanics.

[47]  J. Schöberl,et al.  Divergence‐free tangential finite element methods for incompressible flows on surfaces , 2019, International journal for numerical methods in engineering.

[48]  B. J. Gross,et al.  Meshfree Methods on Manifolds for Hydrodynamic Flows on Curved Surfaces: A Generalized Moving Least-Squares (GMLS) Approach , 2019, J. Comput. Phys..

[49]  A. Bonito,et al.  A divergence-conforming finite element method for the surface Stokes equation , 2019, SIAM J. Numer. Anal..

[50]  P. A. Gazca-Orozco,et al.  An augmented Lagrangian preconditioner for implicitly-constituted non-Newtonian incompressible flow , 2020, SIAM J. Sci. Comput..

[51]  Lawrence Mitchell,et al.  A Reynolds-robust preconditioner for the Reynolds-robust Scott-Vogelius discretization of the stationary incompressible Navier-Stokes equations , 2020, ArXiv.

[52]  Lawrence Mitchell,et al.  A Reynolds-robust preconditioner for the Scott-Vogelius discretization of the stationary incompressible Navier-Stokes equations , 2020, The SMAI journal of computational mathematics.

[53]  Arnold Reusken,et al.  Error analysis of higher order Trace Finite Element Methods for the surface Stokes equation , 2019, J. Num. Math..

[54]  M. Olshanskii,et al.  Inf-sup stability of the trace P2-P1 Taylor-Hood elements for surface PDEs , 2019, Math. Comput..