Association of Two Bactericera Species (Hemiptera: Triozidae) With Native Lycium spp. (Solanales: Solanaceae) in the Potato Growing Regions of the Rio Grande Valley of Texas

Abstract Bactericera cockerelli (Šulc) (Hemiptera: Triozidae) is a vector of ‘Candidatus Liberibacter solanacearum’ (Lso), the pathogen that causes potato zebra chip. Zebra chip incidence varies regionally, perhaps because of geographic differences in species of noncrop hosts available to the vector and in susceptibility of those hosts to Lso. Native and introduced species of Lycium (Solanales: Solanaceae) are important noncrop hosts of B. cockerelli in some regions of North America. Susceptibility of native Lycium species to Lso is uncertain. We investigated the use of two native species of Lycium by B. cockerelli in South Texas and tested whether they are susceptible to Lso. Bactericera cockerelli adults and nymphs were collected frequently from L. berlandieri Dunal and L. carolinianum Walter. Greenhouse assays confirmed that B. cockerelli develops on both species and showed that Lso infects L. carolinianum. Molecular gut content analysis provided evidence that B. cockerelli adults disperse between potato and Lycium. These results demonstrate that L. berlandieri and L. carolinianum are likely noncrop sources of potato-colonizing B. cockerelli in South Texas and that L. carolinianum is a potential source of Lso-infected psyllids. We also routinely collected the congeneric psyllid, Bactericera dorsalis (Crawford), from both Lycium species. These records are the first for this psyllid in Texas. Bactericera dorsalis completed development on both native Lycium species, albeit with high rates of mortality on L. berlandieri. B. dorsalis acquired and transmitted Lso on L. carolinianum under greenhouse conditions but did not transmit Lso to potato. These results document a previously unknown vector of Lso.

[1]  M. Wildung,et al.  Bacterial Endosymbionts of Bactericera maculipennis and Three Mitochondrial Haplotypes of B. cockerelli (Hemiptera: Psylloidea: Triozidae) , 2021, Environmental Entomology.

[2]  M. Wildung,et al.  Association of Bactericera cockerelli (Hemiptera: Triozidae) With the Perennial Weed Physalis longifolia (Solanales: Solanaceae) in the Potato-Growing Regions of Western Idaho , 2021, Environmental Entomology.

[3]  D. Burckhardt,et al.  The psyllids (Hemiptera: Psylloidea) of Florida: newly established and rarely collected taxa and checklist , 2020 .

[4]  W. R. Cooper,et al.  Dispersal of Bactericera cockerelli (Hemiptera: Triozidae) in relation to phenology of matrimony vine (Lycium spp.; Solanaceae) , 2020 .

[5]  M. Wildung,et al.  Host and Non-host ‘Whistle Stops' for Psyllids: Molecular Gut Content Analysis by High-Throughput Sequencing Reveals Landscape-Level Movements of Psylloidea (Hemiptera) , 2019, Environmental Entomology.

[6]  W. R. Cooper,et al.  Whence and Whither the Convolvulus Psyllid? An Invasive Plant Leads to Diet and Range Expansion by a Native Insect Herbivore , 2019, Annals of the Entomological Society of America.

[7]  D. Horton,et al.  The Weed Link in Zebra Chip Epidemiology: Suitability of Non-crop Solanaceae and Convolvulaceae to Potato Psyllid and “Candidatus Liberibacter Solanacearum” , 2019, American Journal of Potato Research.

[8]  A. Jensen,et al.  Building a better Psylloidea (Hemiptera) trap? A field-look at a prototype trap constructed using three-dimensional printer technology , 2018, The Canadian Entomologist.

[9]  C. Tamborindeguy,et al.  Differences in Zebra Chip Severity between ‘Candidatus Liberibacter Solanacearum’ Haplotypes in Texas , 2018, American Journal of Potato Research.

[10]  C. Tamborindeguy,et al.  Infection by Candidatus Liberibacter solanacearum' haplotypes A and B in Solanum lycopersicum 'Moneymaker'. , 2018, Plant disease.

[11]  J. Munyaneza,et al.  Role of ‘Candidatus Liberibacter solanacearum’ and Bactericera cockerelli Haplotypes in Zebra Chip Incidence and Symptom Severity , 2018, American Journal of Potato Research.

[12]  W. R. Cooper,et al.  Survival and development of potato psyllid (Hemiptera: Triozidae) on Convolvulaceae: Effects of a plant-fungus symbiosis (Periglandula) , 2018, bioRxiv.

[13]  F. Workneh,et al.  Assessments of Temporal Variations in Haplotypes of ‘Candidatus Liberibacter solanacearum’ and Its Vector, the Potato Psyllid, in Potato Fields and Native Vegetation , 2018, Environmental Entomology.

[14]  A. Jensen,et al.  New Geographic Records for the Nearctic Psyllid Bactericera maculipennis (Crawford) with Biological Notes and Descriptions of the Egg and Fifth-Instar Nymph (Hemiptera: Psylloidea: Triozidae) , 2017, Proceedings of the Entomological Society of Washington.

[15]  A. Jensen,et al.  Association of Potato Psyllid (Bactericera cockerelli; Hemiptera: Triozidae) with Lycium spp. (Solanaceae) in Potato Growing Regions of Washington, Idaho, and Oregon , 2017, American Journal of Potato Research.

[16]  S. F. Garczynski,et al.  “Candidatus Liberibacter solanacearum” Associated With the Psyllid, Bactericera maculipennis (Hemiptera: Triozidae) , 2017, Environmental Entomology.

[17]  W. R. Cooper,et al.  Gut Content Analysis of a Phloem-Feeding Insect, Bactericera cockerelli (Hemiptera: Triozidae) , 2016, Environmental Entomology.

[18]  D. Horton,et al.  Use of Electrical Penetration Graph Technology to Examine Transmission of ‘Candidatus Liberibacter solanacearum’ to Potato by Three Haplotypes of Potato Psyllid (Bactericera cockerelli; Hemiptera: Triozidae) , 2015, PloS one.

[19]  K. D. Swisher,et al.  Latent Period and Transmission of “Candidatus Liberibacter solanacearum” by the Potato Psyllid Bactericera cockerelli (Hemiptera: Triozidae) , 2014, PloS one.

[20]  W. R. Cooper,et al.  Localization of ‘Candidatus Liberibacter solanacearum' (Rhizobiales: Rhizobiaceae) in Bactericera cockerelli (Hemiptera: Triozidae) , 2014 .

[21]  J. Munyaneza Zebra Chip Disease of Potato: Biology, Epidemiology, and Management , 2012, American Journal of Potato Research.

[22]  J. Crosslin,et al.  High Resolution Melting Analysis of the Cytochrome Oxidase I Gene Identifies Three Haplotypes of the Potato Psyllid in the United States , 2012 .

[23]  E. Bynum,et al.  Seasonal Population Dynamics of the Potato Psyllid (Hemiptera: Triozidae) and Its Associated Pathogen “Candidatus Liberibacter Solanacearum” in Potatoes in the Southern Great Plains of North America , 2012, Journal of Economic Entomology.

[24]  A. Wen,et al.  Development of a PCR Assay for the Rapid Detection and Differentiation of ‘Candidatus Liberibacter solanacearum’ Haplotypes and Their Spatiotemporal Distribution in the United States , 2012, American Journal of Potato Research.

[25]  K. King,et al.  Plants of Deep South Texas: A Field Guide to the Woody and Flowering Species , 2011 .

[26]  Ting Gao,et al.  Validation of the ITS2 Region as a Novel DNA Barcode for Identifying Medicinal Plant Species , 2010, PloS one.

[27]  J. Crosslin,et al.  Phenotypic and Etiological Differences Between Psyllid Yellows and Zebra Chip Diseases of Potato , 2010, American Journal of Potato Research.

[28]  P. Taberlet,et al.  Universal primers for amplification of three non-coding regions of chloroplast DNA , 1991, Plant Molecular Biology.

[29]  D. Burckhardt,et al.  A taxonomic reassessment of the triozid genus Bactericera (Hemiptera: Psylloidea). , 1997 .

[30]  J. Bové,et al.  PCR detection of the two 'Candidatus' Liberobacter species associated with greening disease of citrus. , 1996, Molecular and cellular probes.

[31]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[32]  R. Wallis Ecological Studies on the Potato Psyllid as a Pest of Potatoes , 1955 .

[33]  D. Pletsch The potato psyllid, Paratrioza cockerelli (Sulc), its biology and control. , 1947 .

[34]  V. E. Romney Breeding Areas of the Tomato Psyllid, Paratrioza cockerelli (Šule). , 1939 .

[35]  G. Knowlton,et al.  Host Plants of the Potato Psyllid. , 1934 .

[36]  C. Hitchcock A Monographic Study of the Genus Lycium of the Western Hemisphere , 1932 .