Major Structural Differences and Novel Potential Virulence Mechanisms from the Genomes of Multiple Campylobacter Species

Sequencing and comparative genome analysis of four strains of Campylobacter including C. lari RM2100, C. upsaliensis RM3195, and C. coli RM2228 has revealed major structural differences that are associated with the insertion of phage- and plasmid-like genomic islands, as well as major variations in the lipooligosaccharide complex. Poly G tracts are longer, are greater in number, and show greater variability in C. upsaliensis than in the other species. Many genes involved in host colonization, including racR/S, cadF, cdt, ciaB, and flagellin genes, are conserved across the species, but variations that appear to be species specific are evident for a lipooligosaccharide locus, a capsular (extracellular) polysaccharide locus, and a novel Campylobacter putative licABCD virulence locus. The strains also vary in their metabolic profiles, as well as their resistance profiles to a range of antibiotics. It is evident that the newly identified hypothetical and conserved hypothetical proteins, as well as uncharacterized two-component regulatory systems and membrane proteins, may hold additional significant information on the major differences in virulence among the species, as well as the specificity of the strains for particular hosts.

[1]  B. Pearson,et al.  Diversity within the Campylobacter jejuni type I restriction-modification loci. , 2005, Microbiology.

[2]  J. Ursing,et al.  ThermotolerantCampylobacter with no or weak catalase activity isolated from dogs , 1983, Current Microbiology.

[3]  H. Endtz,et al.  Genetic basis for the variation in the lipooligosaccharide outer core of Campylobacter jejuni and possible association of glycosyltransferase genes with post-infectious neuropathies. , 2005 .

[4]  R. Miles,et al.  The pattern and kinetics of substrate metabolism of Campylobacter jejuni and Campylobacter coli , 2004, Letters in applied microbiology.

[5]  Howard Ochman,et al.  Identification and phylogenetic sorting of bacterial lineages with universally conserved genes and proteins. , 2004, Environmental microbiology.

[6]  Brian H. Raphael,et al.  Secretion of Virulence Proteins from Campylobacter jejuni Is Dependent on a Functional Flagellar Export Apparatus , 2004, Journal of bacteriology.

[7]  E. Cascales,et al.  Definition of a Bacterial Type IV Secretion Pathway for a DNA Substrate , 2004, Science.

[8]  Rekha Seshadri,et al.  The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough , 2004, Nature Biotechnology.

[9]  M. Madsen,et al.  Longitudinal Study of the Excretion Patterns of Thermophilic Campylobacter spp. in Young Pet Dogs in Denmark , 2004, Journal of Clinical Microbiology.

[10]  David A Rasko,et al.  Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. , 2004, Nucleic acids research.

[11]  Steven L Salzberg,et al.  Automated correction of genome sequence errors. , 2004, Nucleic acids research.

[12]  S. Salzberg,et al.  Hierarchical scaffolding with Bambus. , 2003, Genome research.

[13]  G. Hecht,et al.  Disruptionof Cell Polarity by Enteropathogenic Escherichia coli EnablesBasolateral Membrane Proteins To Migrate Apically and ToPotentiate PhysiologicalConsequences , 2003, Infection and Immunity.

[14]  Z. Ding,et al.  The outs and ins of bacterial type IV secretion substrates. , 2003, Trends in microbiology.

[15]  E. Cascales,et al.  The versatile bacterial type IV secretion systems , 2003, Nature Reviews Microbiology.

[16]  E. Engvall,et al.  Isolation and Identification of Thermophilic Campylobacter Species in Faecal Samples from Swedish Dogs , 2003, Scandinavian journal of infectious diseases.

[17]  Folker Meyer,et al.  Complete genome sequence and analysis of Wolinella succinogenes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[18]  V. DiRita,et al.  Natural Transformation of Campylobacter jejuni Requires Components of a Type II Secretion System , 2003, Journal of bacteriology.

[19]  G. Nyakatura,et al.  The complete genome sequence of the carcinogenic bacterium Helicobacter hepaticus , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[20]  P. Charifson,et al.  Active-Site Residues of Escherichia coli DNA Gyrase Required in Coupling ATP Hydrolysis to DNA Supercoiling and Amino Acid Substitutions Leading to Novobiocin Resistance , 2003, Antimicrobial Agents and Chemotherapy.

[21]  Rob J. L. Willems,et al.  Comparative Genotyping of Campylobacter jejuni by Amplified Fragment Length Polymorphism, Multilocus Sequence Typing, and Short Repeat Sequencing: Strain Diversity, Host Range, and Recombination , 2003, Journal of Clinical Microbiology.

[22]  G. Hecht,et al.  Disruption of Cell Polarity by Enteropathogenic Escherichia coli Enables Basolateral Membrane Proteins To Migrate Apically and To Potentiate Physiological Consequences , 2003 .

[23]  L. Piddock,et al.  Fluoroquinolone resistance in Campylobacter species from man and animals: detection of mutations in topoisomerase genes. , 2003, The Journal of antimicrobial chemotherapy.

[24]  M. Konkel,et al.  Fibronectin-Facilitated Invasion of T84 Eukaryotic Cells by Campylobacter jejuni Occurs Preferentially at the Basolateral Cell Surface , 2002, Infection and Immunity.

[25]  R. Alm,et al.  DNA Sequence and Mutational Analyses of the pVir Plasmid of Campylobacter jejuni 81-176 , 2002, Infection and Immunity.

[26]  B. Duim,et al.  Molecular characterization of Campylobacter jejuni clones: a basis for epidemiologic investigation. , 2002 .

[27]  Matthew K. Waldor,et al.  Bacteriophage Control of Bacterial Virulence , 2002, Infection and Immunity.

[28]  Meng-Yao Liu,et al.  Genome sequence of a serotype M3 strain of group A Streptococcus: Phage-encoded toxins, the high-virulence phenotype, and clone emergence , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[29]  S. Salzberg,et al.  Fast algorithms for large-scale genome alignment and comparison. , 2002, Nucleic acids research.

[30]  Y. Nagai,et al.  Genome and virulence determinants of high virulence community-acquired MRSA , 2002, The Lancet.

[31]  Diane E. Taylor,et al.  Mutations in the 16S rRNA Genes of Helicobacter pylori Mediate Resistance to Tetracycline , 2002, Journal of bacteriology.

[32]  T. Wassenaar,et al.  Identification of genetic differences between two Campylobacter jejuni strains with different colonization potentials. , 2002, Microbiology.

[33]  S. Casjens,et al.  Bacteriophage Mu genome sequence: analysis and comparison with Mu-like prophages in Haemophilus, Neisseria and Deinococcus. , 2002, Journal of molecular biology.

[34]  L. Serino,et al.  Genetic and functional analysis of the phosphorylcholine moiety of commensal Neisseria lipopolysaccharide , 2002, Molecular microbiology.

[35]  O. Rosef,et al.  Thermophilic campylobacters in surface water: A potential risk of campylobacteriosis , 2001, International journal of environmental health research.

[36]  D. van Sinderen,et al.  Comparative genomics reveals close genetic relationships between phages from dairy bacteria and pathogenic Streptococci: evolutionary implications for prophage-host interactions. , 2001, Virology.

[37]  I. Kobayashi Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. , 2001, Nucleic acids research.

[38]  Michael J. Stanhope,et al.  Universal trees based on large combined protein sequence data sets , 2001, Nature Genetics.

[39]  L. Wieler,et al.  Genomic Heterogeneity and O-Antigenic Diversity ofCampylobacter upsaliensis and Campylobacter helveticus Strains Isolated from Dogs and Cats in Germany , 2001, Journal of Clinical Microbiology.

[40]  Z. Shen,et al.  Coinfection of Enteric Helicobacterspp. and Campylobacter spp. in Cats , 2001, Journal of Clinical Microbiology.

[41]  Marilyn Roberts,et al.  Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance , 2001, Microbiology and Molecular Biology Reviews.

[42]  C. Szymanski,et al.  A phase‐variable capsule is involved in virulence of Campylobacter jejuni 81‐176 , 2001, Molecular microbiology.

[43]  M. Kanehisa,et al.  Whole genome sequencing of meticillin-resistant Staphylococcus aureus , 2001, The Lancet.

[44]  S. Suerbaum,et al.  Allelic Diversity and Recombination inCampylobacter jejuni , 2001, Journal of bacteriology.

[45]  C. Locht,et al.  Two‐partner secretion in Gram‐negative bacteria: a thrifty, specific pathway for large virulence proteins , 2001, Molecular microbiology.

[46]  N. W. Davis,et al.  Genome sequence of enterohaemorrhagic Escherichia coli O157:H7 , 2001, Nature.

[47]  S. Salzberg,et al.  Evidence for symmetric chromosomal inversions around the replication origin in bacteria , 2000, Genome Biology.

[48]  R. Mandrell,et al.  Detection on Surfaces and in Caco-2 Cells of Campylobacter jejuni Cells Transformed with New gfp, yfp, andcfp Marker Plasmids , 2000, Applied and Environmental Microbiology.

[49]  D. Wareing,et al.  Campylobacter contamination of raw meat and poultry at retail sale: identification of multiple types and comparison with isolates from human infection. , 2000, Journal of food protection.

[50]  A. Moran,et al.  Sialylation of Lipooligosaccharide Cores Affects Immunogenicity and Serum Resistance of Campylobacter jejuni , 2000, Infection and Immunity.

[51]  S. Casjens,et al.  The origins and ongoing evolution of viruses. , 2000, Trends in microbiology.

[52]  E. Raleigh,et al.  A simple in vitro Tn7-based transposition system with low target site selectivity for genome and gene analysis. , 2000, Nucleic acids research.

[53]  J. Brisson,et al.  Biosynthesis of Ganglioside Mimics in Campylobacter jejuni OH4384 , 2000, The Journal of Biological Chemistry.

[54]  B. Barrell,et al.  The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences , 2000, Nature.

[55]  Eugene W. Myers,et al.  A whole-genome assembly of Drosophila. , 2000, Science.

[56]  Robert V. Tauxe,et al.  Epidemiology of Campylobacter jejuni infections in the United States and other industrialized nations , 2000 .

[57]  R. Harvey,et al.  Prevalence of Campylobacter spp isolated from the intestinal tract of pigs raised in an integrated swine production system. , 1999, Journal of the American Veterinary Medical Association.

[58]  H. Willison,et al.  The immunopathogenesis of Miller Fisher syndrome , 1999, Journal of Neuroimmunology.

[59]  S. Salzberg,et al.  Improved microbial gene identification with GLIMMER. , 1999, Nucleic acids research.

[60]  E. Moxon,et al.  The genetic basis of the phase variation repertoire of lipopolysaccharide immunotypes in Neisseria meningitidis. , 1999, Microbiology.

[61]  V. Atanassova,et al.  Prevalence of Campylobacter spp. in poultry and poultry meat in Germany. , 1999, International journal of food microbiology.

[62]  O. Sköld,et al.  Sulfonamide Resistance in Clinical Isolates ofCampylobacter jejuni: Mutational Changes in the Chromosomal Dihydropteroate Synthase , 1999, Antimicrobial Agents and Chemotherapy.

[63]  E. Bayerdörffer,et al.  Rifampin and Rifabutin Resistance Mechanism inHelicobacter pylori , 1999, Antimicrobial Agents and Chemotherapy.

[64]  B. Wren,et al.  A Novel Campylobacter jejuniTwo-Component Regulatory System Important for Temperature-Dependent Growth and Colonization , 1999, Journal of bacteriology.

[65]  E. Tuomanen,et al.  Pneumococcal licD2 gene is involved in phosphorylcholine metabolism , 1999, Molecular microbiology.

[66]  Benjamin L. King,et al.  Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori , 1999, Nature.

[67]  P. Sherman,et al.  Campylobacter upsaliensis: Waiting in the Wings , 1998, Clinical Microbiology Reviews.

[68]  I. Nachamkin,et al.  Campylobacter Species and Guillain-Barré Syndrome , 1998, Clinical Microbiology Reviews.

[69]  J. Moore,et al.  Occurrence of thermophilic Campylobacter spp. in porcine liver in Northern Ireland. , 1998, Journal of food protection.

[70]  P. Green,et al.  Base-calling of automated sequencer traces using phred. I. Accuracy assessment. , 1998, Genome research.

[71]  D. Taylor,et al.  Cloning and sequence analysis of two copies of a 23S rRNA gene from Helicobacter pylori and association of clarithromycin resistance with 23S rRNA mutations , 1997, Antimicrobial agents and chemotherapy.

[72]  M. Madsen,et al.  Healthy puppies and kittens as carriers of Campylobacter spp., with special reference to Campylobacter upsaliensis , 1997, Journal of clinical microbiology.

[73]  P. Fields,et al.  Discrimination of Campylobacter jejuni isolates by fla gene sequencing , 1997, Journal of clinical microbiology.

[74]  Mark Borodovsky,et al.  The complete genome sequence of the gastric pathogen Helicobacter pylori , 1997, Nature.

[75]  M. Konkel,et al.  Identification and molecular cloning of a gene encoding a fibronectin‐binding protein (CadF) from Campylobacter jejuni , 1997, Molecular microbiology.

[76]  C. Parkos,et al.  Unmasking of intestinal epithelial lateral membrane beta1 integrin consequent to transepithelial neutrophil migration in vitro facilitates inv-mediated invasion by Yersinia pseudotuberculosis , 1997, Infection and immunity.

[77]  J. Weiser,et al.  Decoration of lipopolysaccharide with phosphorylcholine: a phase-variable characteristic of Haemophilus influenzae , 1997, Infection and immunity.

[78]  J. Ketley Pathogenesis of enteric infection by Campylobacter. , 1997, Microbiology.

[79]  P. Vandamme,et al.  Genotypic diversity of Campylobacter lari isolated from mussels and oysters in The Netherlands. , 1997, International journal of food microbiology.

[80]  B. Appelmelk,et al.  Review: Molecular mimicry of host structures by lipopolysaccharides of Campylobacter and Helicobacter spp.: implications in pathogenesis , 1996 .

[81]  R. Fleischmann,et al.  DNA repeats identify novel virulence genes in Haemophilus influenzae. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[82]  H. Goossens,et al.  Investigation of an outbreak of Campylobacter upsaliensis in day care centers in Brussels: analysis of relationships among isolates by phenotypic and genotypic typing methods. , 1995, The Journal of infectious diseases.

[83]  Owen White,et al.  TIGR Assembler: A New Tool for Assembling Large Shotgun Sequencing Projects , 1995 .

[84]  T. Trust,et al.  Isolation of motile and non‐motile insertional mutants of Campylobacter jejuni: the role of motility in adherence and invasion of eukaryotic cells , 1994, Molecular microbiology.

[85]  H. Fernández,et al.  Chicken as potential contamination source of Campylobacter lari in Iquitos, Peru. , 1994, Revista do Instituto de Medicina Tropical de Sao Paulo.

[86]  T. Gurgan,et al.  Abortion associated with Campylobacter upsaliensis , 1994, Journal of clinical microbiology.

[87]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[88]  T. Wassenaar,et al.  Genetic manipulation of Campylobacter: evaluation of natural transformation and electro-transformation. , 1993, Gene.

[89]  T. Wassenaar,et al.  Colonization of chicks by motility mutants of Campylobacter jejuni demonstrates the importance of flagellin A expression. , 1993, Journal of general microbiology.

[90]  C. E. Park,et al.  Occurrence of thermotolerant campylobacters in fresh vegetables sold at farmers' outdoor markets and supermarkets. , 1992, Canadian journal of microbiology.

[91]  H. Goossens,et al.  Campylobacter upsaliensis enteritis associated with canine infections , 1991, The Lancet.

[92]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[93]  D. Taylor,et al.  Natural transformation in Campylobacter species , 1990, Journal of bacteriology.

[94]  E. Hansen,et al.  Identification of a chromosomal locus for expression of lipopolysaccharide epitopes in Haemophilus influenzae , 1989, Infection and immunity.

[95]  S. Walmsley,et al.  Direct isolation of atypical thermophilic Campylobacter species from human feces on selective agar medium , 1989, Journal of clinical microbiology.

[96]  G. Glünder,et al.  Vorkommen und Charakterisierung von Campylobacter spp. bei Silbermöwen (Larus argentatus), Dreizehenmöwen (Rissa tridactyla) und Haussperlingen (Passer domesticus) , 1989 .

[97]  G. Glünder,et al.  [The occurrence and characterization of Campylobacter spp. in silver gulls (Larus argentatus), three-toed gulls (Rissa tridactyla) and house sparrows (Passer domesticus)]. , 1989, Zentralblatt fur Veterinarmedizin. Reihe B. Journal of veterinary medicine. Series B.

[98]  Billy,et al.  [Campylobacter jejuni]. , 1989, Tijdschrift voor diergeneeskunde.

[99]  S. Falkow,et al.  Identification of invasin: A protein that allows enteric bacteria to penetrate cultured mammalian cells , 1987, Cell.

[100]  R. Tauxe,et al.  Illness associated with Campylobacter laridis, a newly recognized Campylobacter species , 1985, Journal of clinical microbiology.

[101]  G. Carlone,et al.  Aerobic and anaerobic respiratory systems in Campylobacter fetus subsp. jejuni grown in atmospheres containing hydrogen , 1982, Journal of bacteriology.