Incorporating Pyrrolic and Pyridinic Nitrogen into a Porous Carbon made from C60 Molecules to Obtain Superior Energy Storage

Nitrogen-doped porous carbon is obtained by KOH activation of C60 in an ammonia atmosphere. As an anode for Li-ion batteries, it shows a reversible capacity of up to ≈1900 mA h g-1 at 100 mA g-1 . Simulations suggest that the superior Li-ion storage may be related to the curvature of the graphenes and the presence of pyrrolic/pyridinic group dopants.

[1]  Na Yeon Kim,et al.  Creating Pores on Graphene Platelets by Low-Temperature KOH Activation for Enhanced Electrochemical Performance. , 2016, Small.

[2]  Qian Wang,et al.  Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities , 2016 .

[3]  Yanwu Zhu,et al.  Assembling carbon quantum dots to a layered carbon for high-density supercapacitor electrodes , 2016, Scientific Reports.

[4]  Nanjundan Ashok Kumar,et al.  Doped graphene supercapacitors , 2015, Nanotechnology.

[5]  Xing Lu,et al.  A High‐Performance Supercapacitor Based on KOH Activated 1D C70 Microstructures , 2015 .

[6]  Na Yeon Kim,et al.  Rupturing C60 Molecules into Graphene-Oxide-like Quantum Dots: Structure, Photoluminescence, and Catalytic Application. , 2015, Small.

[7]  Y. Tong,et al.  Three dimensional architectures: design, assembly and application in electrochemical capacitors , 2015 .

[8]  Zhibin Yang,et al.  Recent advancement of nanostructured carbon for energy applications. , 2015, Chemical reviews.

[9]  Baoliang Chen,et al.  Synthesis, decoration and properties of three-dimensional graphene-based macrostructures: A review , 2015 .

[10]  Chuanbao Cao,et al.  Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. , 2015, ACS nano.

[11]  Yang Yang,et al.  High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework , 2014, Nature Communications.

[12]  Haihui Wang,et al.  Superior cycle stability of graphene nanosheets prepared by freeze-drying process as anodes for lithium-ion batteries , 2014 .

[13]  Kevin N. Wood,et al.  Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications , 2014 .

[14]  Yalin Lu,et al.  Capacitance of carbon-based electrical double-layer capacitors , 2014, Nature Communications.

[15]  O. Stéphan,et al.  Atomic configuration of nitrogen-doped single-walled carbon nanotubes. , 2014, Nano letters.

[16]  Shiren Wang,et al.  Enhancing thermoelectric properties of organic composites through hierarchical nanostructures , 2013, Scientific Reports.

[17]  James M Tour,et al.  Graphene‐Wrapped MnO2–Graphene Nanoribbons as Anode Materials for High‐Performance Lithium Ion Batteries , 2013, Advanced materials.

[18]  Jijun Zhao,et al.  Hole defects and nitrogen doping in graphene: implication for supercapacitor applications. , 2013, ACS applied materials & interfaces.

[19]  Ziqi Tan,et al.  Volumetric capacitance of compressed activated microwave-expanded graphite oxide (a-MEGO) electrodes , 2013 .

[20]  Dejun Li,et al.  Lithium storage performance of carbon nanotubes with different nitrogen contents as anodes in lithium ions batteries , 2013 .

[21]  Huanlei Wang,et al.  Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors , 2013 .

[22]  Stefan Kaskel,et al.  KOH activation of carbon-based materials for energy storage , 2012 .

[23]  Li‐Ming Wu,et al.  First-Principles Study of Lithium Adsorption and Diffusion on Graphene with Point Defects , 2012 .

[24]  W. Lu,et al.  Spin dynamics and relaxation in graphene nanoribbons: electron spin resonance probing. , 2012, ACS nano.

[25]  S. Sinogeikin,et al.  Long-Range Ordered Carbon Clusters: A Crystalline Material with Amorphous Building Blocks , 2012, Science.

[26]  Yong‐Sheng Hu,et al.  Lithium storage in nitrogen-rich mesoporous carbon materials , 2012 .

[27]  Yunhui Huang,et al.  Nitrogen‐Doped Porous Carbon Nanofiber Webs as Anodes for Lithium Ion Batteries with a Superhigh Capacity and Rate Capability , 2012, Advanced materials.

[28]  Xiaohong Shao,et al.  Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study , 2012 .

[29]  Hui‐Ming Cheng,et al.  Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. , 2011, Nature materials.

[30]  G. Cui,et al.  Nitrogen-doped graphene nanosheets with excellent lithium storage properties , 2011 .

[31]  G. Shi,et al.  Self-assembled graphene hydrogel via a one-step hydrothermal process. , 2010, ACS nano.

[32]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[33]  Bei Wang,et al.  FACILE SYNTHESIS AND CHARACTERIZATION OF GRAPHENE NANOSHEETS , 2008 .

[34]  Z. Ni,et al.  Welding of multi-walled carbon nanotubes by ion beam irradiation , 2008 .

[35]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[36]  Justin C. Lytle,et al.  Synthesis and Rate Performance of Monolithic Macroporous Carbon Electrodes for Lithium‐Ion Secondary Batteries , 2005 .

[37]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[38]  E. Frąckowiak,et al.  Effect of nitrogen in carbon electrode on the supercapacitor performance , 2005 .

[39]  M. Hulman,et al.  Raman spectroscopy of fullerenes and fullerene–nanotube composites , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[40]  Javier Pérez-Ramírez,et al.  Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis , 2003 .

[41]  I. G. Batirev,et al.  Core-level XPS spectra of fullerene, highly oriented pyrolitic graphite, and glassy carbon , 2003 .

[42]  C. R. Martin,et al.  Carbon nanotubule membranes for electrochemical energy storage and production , 1998, Nature.

[43]  J. Barker,et al.  Structure and Lithium Intercalation Properties of Synthetic and Natural Graphite , 1996 .

[44]  Hans Kuzmany,et al.  Infrared spectroscopy of fullerenes , 1995 .

[45]  L. B. Ebert,et al.  X-ray diffraction study of fullerene soot , 1993 .

[46]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[47]  Kosmas Prassides,et al.  Crystal structure and bonding of ordered C60 , 1991, Nature.

[48]  William A. Goddard,et al.  Prediction of fullerene packing in C60 and C70 crystals , 1991, Nature.

[49]  W. Krätschmer,et al.  Solid C60: a new form of carbon , 1990, Nature.

[50]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.