Classification Of Skin Lesions Using An Ensemble Of Deep Neural Networks

Skin cancer is among the deadliest variants of cancer if not recognized and treated in time. This work focuses on the identification of this disease using an ensemble of state-of-the-art deep learning approaches. More specifically, we propose the aggregation of robust convolutional neural networks (CNNs) into one neural net architecture, where the final classification is achieved based on the weighted output of the member CNNs. Since our framework is realized within a single neural net architecture, all the parameters of the member CNNs and the weights applied in the fusion can be determined by backpropagation routinely applied for such tasks. The presented ensemble consists of the CNNs AlexNet, VGGNet, GoogLeNet, all of which have been won in subsequent years the most prominent worldwide image classification challenge ImageNet. For an objective evaluation of our approach, we have tested its performance on the official test database of the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 challenge on Skin Lesion Analysis Towards Melanoma Detection dedicated to skin cancer recognition. Our experimental studies show that the proposed approach is competitive in this field. Moreover, the ensemble-based approach outperformed all of its member CNNs.

[1]  Trevor Darrell,et al.  Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[2]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[3]  J. Emery,et al.  Using the 7-point checklist as a diagnostic aid for pigmented skin lesions in general practice: a diagnostic validation study. , 2013, The British journal of general practice : the journal of the Royal College of General Practitioners.

[4]  Noel C. F. Codella,et al.  Skin lesion analysis toward melanoma detection: A challenge at the 2017 International symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC) , 2016, 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018).

[5]  Trevor Darrell,et al.  Part-Based R-CNNs for Fine-Grained Category Detection , 2014, ECCV.

[6]  Yoshua Bengio,et al.  How transferable are features in deep neural networks? , 2014, NIPS.

[7]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[8]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Xiang Zhang,et al.  OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks , 2013, ICLR.

[11]  Sebastian Thrun,et al.  Dermatologist-level classification of skin cancer with deep neural networks , 2017, Nature.