Canonical Structures for the Working Coq User
暂无分享,去创建一个
[1] Ralf Hinze,et al. Fun with phantom types , 2003 .
[2] Philip Wadler,et al. How to make ad-hoc polymorphism less ad hoc , 1989, POPL '89.
[3] Herman Geuvers,et al. A Constructive Algebraic Hierarchy in Coq , 2002, J. Symb. Comput..
[4] François Garillot,et al. Generic Proof Tools and Finite Group Theory , 2011 .
[5] David Aspinall,et al. Formalising Java's Data Race Free Guarantee , 2007, TPHOLs.
[6] Amokrane Saibi. Outils Génériques de Modélisation et de Démonstration pour la Formalisation des Mathématiques en Théorie des Types. Application à la Théorie des Catégories. , 1999 .
[7] Ioana Pasca,et al. Canonical Big Operators , 2008, TPHOLs.
[8] Cyril Cohen,et al. Formalized algebraic numbers: construction and first-order theory. (Formalisation des nombres algébriques : construction et théorie du premier ordre) , 2012 .
[9] Enrico Tassi,et al. A Small Scale Reflection Extension for the Coq system , 2008 .
[10] Amokrane Saïbi. Typing algorithm in type theory with inheritance , 1997, POPL '97.
[11] Derek Dreyer,et al. How to make ad hoc proof automation less ad hoc , 2011, ICFP '11.
[12] Matthieu Sozeau,et al. First-Class Type Classes , 2008, TPHOLs.
[13] Enrico Tassi,et al. A Modular Formalisation of Finite Group Theory , 2007, TPHOLs.
[14] Georges Gonthier. Point-Free, Set-Free Concrete Linear Algebra , 2011, ITP.
[15] Bas Spitters,et al. Type classes for mathematics in type theory† , 2011, Mathematical Structures in Computer Science.
[16] Gérard P. Huet,et al. Constructive category theory , 2000, Proof, Language, and Interaction.
[17] Andrea Asperti,et al. Hints in Unification , 2009, TPHOLs.
[18] Assia Mahboubi,et al. Packaging Mathematical Structures , 2009, TPHOLs.