Prediction of anti and gauche vicinal proton‐proton coupling constants in carbohydrates: A simple additivity rule for pyranose rings
暂无分享,去创建一个
[1] L. D. Hall,et al. Studies of specifically fluorinated carbohydrates. Part I. Nuclear magnetic resonance studies of hexopyranosyl fluoride derivatives , 1969 .
[2] R. London,et al. Dihedral-angle dependence of geminal, scalar, coupling-constants in [1-13C]-amino sugars , 1978 .
[3] H. Paulsen,et al. Bausteine von Oligosacchariden, IX: Stereoselektive Synthese α‐glycosidisch verknüpfter Di‐ und Oligosaccharide der 2‐Amino‐2‐desoxy‐D‐glucopyranose , 1978 .
[4] R. Glick,et al. Fine Splittings in the Nuclear Magnetic Resonance Spectra of Alkyl Derivatives , 1956 .
[5] I. Dyong,et al. Zur Synthese und 1H‐NMR‐Spektroskopie von 2,3,6‐Tridesoxyhexosen und ihren O‐Benzyl‐glycosiden , 1977 .
[6] G. Strecker,et al. Structural Studies on 2‐Acetamido‐1‐N‐(4‐l‐aspartyl)‐ 2‐deoxy‐β‐d‐glucopyranosylamine and 2‐Acetamido‐6‐O‐(α‐l‐fucopyranosyl)‐1‐N‐(4‐l‐aspartyl)‐2‐deoxy‐β‐d‐glucopyranosylamine by 360‐MHz Proton‐Magnetic‐Resonance Spectroscopy , 1977 .
[7] N. Sheppard,et al. (H, H) coupling constants in the nuclear magnetic resonance spectra of hydrocarbon groupings , 1962 .
[8] H. Paulsen,et al. Bausteine von Oligosacchariden, XI: Synthese α‐glycosidisch verknüpfter Disaccharide der 2‐Amino‐2‐desoxy‐D‐galactopyranose , 1978 .
[9] H. Paulsen,et al. Stereoselektive synthese von α-verknüpften polyaminodesoxy-zucker-disacchariden mit hilfe der azid-methode , 1979 .
[10] I. Dyong,et al. Synthesen biologisch wichtiger Kohlenhydrate, 13: Synthese des N‐Acetyl‐L‐acosamins (3‐Acetylamino‐2,3,6‐tridesoxy‐L‐arabino‐hexose) , 1978 .
[11] K. Williamson. Substituent Effects on Nuclear Magnetic Resonance Coupling Constants and Chemical Shifts in a Saturated System: Hexachlorobicyclo [2.2.1]heptenes , 1963 .
[12] M. Sundaralingam,et al. Conformational analysis of the sugar ring in nucleosides and nucleotides. A new description using the concept of pseudorotation. , 1972, Journal of the American Chemical Society.
[13] G. Binsch,et al. Dynamic proton magnetic resonance studies on complex spin systems. Non‐mutual three‐spin exchange in four 1‐substituted cyclohexanes‐2,2,3,3,4,4,5,5‐d8 and mutual four‐spin exchange in cyclohexane‐1,1,2,2,3,3,4,4‐d8 , 1978 .
[14] K. Heyns,et al. Die Synthese von 2,3‐Diamino‐2,3‐didesoxy‐D‐glycosiden aus 3‐Azidoglycalen über ihre Nitrosylchlorid‐Addukte , 1978 .
[15] M. Karplus. Contact Electron‐Spin Coupling of Nuclear Magnetic Moments , 1959 .
[16] R. J. Abraham,et al. Rotational isomerism—XXI: The conformation of 2-amino-3-fluoropropanoic acid (2-afp) and 2-fluoro-3-aminopropanoic acid (3-afp) as the zwitterion, cation and anion, an nmr and mo study , 1977 .
[17] L. D. Hall,et al. Fluorinated Carbohydrates. Part VIII. Studies of Some 3-Deoxy-3-fluoro-D-pyranosyl Fluorides , 1971 .
[18] M. Anteunis,et al. Experimental data for gauche couplings in carbohydrates , 1976 .
[19] R. C. Fahey,et al. Molecular Orbital Calculations of Spin-Spin Coupling Constants for Hydrocarbons , 1966 .
[20] J. Vliegenthart,et al. Conformational studies on pertrimethylsilyl derivatives of some mono- and disaccharides by 220 MHz PMR spectroscopy , 1973 .
[21] J. Thiem,et al. Untersuchungen zur Modifizierung der Mannobiose und Synthese von Methyl‐4‐O‐β‐D‐rhamnosyl‐α‐D‐olivosid , 1979 .
[22] K. Pachler. The functional form of the karplus equation , 1972 .
[23] D. Horton,et al. Conformational studies on pyranoid sugar derivatives by NMR spectroscopy. Correlations of observed proton—proton coupling constants with the generalized Karplus equation† , 1971 .
[24] G. Wegner,et al. Barrieren der behinderten Rotation um die N‐glycosidische Bindung, I: N‐Glucopyranoside , 1978 .
[25] E. Havinga,et al. Conformation of non-aromatic ring compounds—XXXIII: Trans-1,2-dihalogenocyclohexanes,trans-1,2-dihalogenocyclopentanes and α-halogenocyclohexanones; correlation between dipole moments and vicinal proton spin coupling constants , 1967 .
[26] Pierre Sinaÿ,et al. Etudes configurationnelles et conformationnelles de quelques chlorures de désoxy‐6 β‐L‐héxopyrannosyle chlorosulfonyles et de leurs glycosides de méthyle , 1975 .
[27] Martin Karplus,et al. Vicinal Proton Coupling in Nuclear Magnetic Resonance , 1963 .
[28] G. A. Jeffrey,et al. Application of ab initio molecular orbital calculations to the structural moieties of carbohydrates. 3 , 1978 .
[29] W. Depmeier,et al. Barrieren der behinderten Rotation um die N‐glycosidische Bindung, II: 1‐(α‐D‐Mannopyranosyl)isocyanursäuren , 1978 .
[30] K. Pachler. Extended hückel theory MO calculations of proton-proton coupling constants—II , 1971 .
[31] H. Paulsen,et al. Verzweigte Zucker, XXIII: 1,4‐Addition an Hex‐1‐enopyran‐3‐ulosen zu Oct‐2‐ulosonsäuren , 1978 .
[32] E. Brown,et al. Cell-surface carbohydrates and their interactions. I. NMR or N-acetyl neuraminic acid. , 1975, Biochimica et biophysica acta.
[33] M. Sundaralingam,et al. Conformational analysis of the sugar ring in nucleosides and nucleotides. Improved method for the interpretation of proton magnetic resonance coupling constants. , 1973, Journal of the American Chemical Society.
[34] H. Paulsen,et al. Monosaccharide mit stickstoffhaltigem Ring, XXXVI: 4,6‐Diamino‐1,6‐anhydro‐4,6‐didesoxy‐α‐D‐galactofuranose, ein Zucker mit zwei stickstoffhaltigen Ringen , 1978 .
[35] R. J. Abraham,et al. The proton magnetic resonance spectra of some substituted ethanes , 1964 .
[36] M. Anteunis,et al. 1H-N.m.r. study of l-rhamnose, methyl α-l-rhamnopyranoside, and 4-O-β-d-galactopyranosyl-l-rhamnose in deuterium oxide , 1976 .
[37] M. Huggins. Bond Energies and Polarities1 , 1953 .