Prediction of anti and gauche vicinal proton‐proton coupling constants in carbohydrates: A simple additivity rule for pyranose rings

The effect of the relative orientation and electronegativity of substituents on the magnitude of 3J(aa), 3J(ae) and 3J(ee) is well predicated by a simple set of additivity constants, valid for pyranose rings in carbohydrates. The proposed set of parameters is used to calculate 327 coupling constants [3J(HH)] in a variety of pyranosides and related compounds. A comparison with experimental values taken from the literature shows that couplings in molecules which are conformationally pure and underformed can be predicted with a surprising accuracy. An overall root-mean-square agreement of 0.29 Hz is attained for a selected group of 305 coupling values. A statistical breakdown of ΔJ(aa) and ΔJ(ae) [ΔJ=J(exp)-J(calc)] along each carbon-carbon bond in the pyranose systems reveals an unexpected degree of geometrical homogeneity.

[1]  L. D. Hall,et al.  Studies of specifically fluorinated carbohydrates. Part I. Nuclear magnetic resonance studies of hexopyranosyl fluoride derivatives , 1969 .

[2]  R. London,et al.  Dihedral-angle dependence of geminal, scalar, coupling-constants in [1-13C]-amino sugars , 1978 .

[3]  H. Paulsen,et al.  Bausteine von Oligosacchariden, IX: Stereoselektive Synthese α‐glycosidisch verknüpfter Di‐ und Oligosaccharide der 2‐Amino‐2‐desoxy‐D‐glucopyranose , 1978 .

[4]  R. Glick,et al.  Fine Splittings in the Nuclear Magnetic Resonance Spectra of Alkyl Derivatives , 1956 .

[5]  I. Dyong,et al.  Zur Synthese und 1H‐NMR‐Spektroskopie von 2,3,6‐Tridesoxyhexosen und ihren O‐Benzyl‐glycosiden , 1977 .

[6]  G. Strecker,et al.  Structural Studies on 2‐Acetamido‐1‐N‐(4‐l‐aspartyl)‐ 2‐deoxy‐β‐d‐glucopyranosylamine and 2‐Acetamido‐6‐O‐(α‐l‐fucopyranosyl)‐1‐N‐(4‐l‐aspartyl)‐2‐deoxy‐β‐d‐glucopyranosylamine by 360‐MHz Proton‐Magnetic‐Resonance Spectroscopy , 1977 .

[7]  N. Sheppard,et al.  (H, H) coupling constants in the nuclear magnetic resonance spectra of hydrocarbon groupings , 1962 .

[8]  H. Paulsen,et al.  Bausteine von Oligosacchariden, XI: Synthese α‐glycosidisch verknüpfter Disaccharide der 2‐Amino‐2‐desoxy‐D‐galactopyranose , 1978 .

[9]  H. Paulsen,et al.  Stereoselektive synthese von α-verknüpften polyaminodesoxy-zucker-disacchariden mit hilfe der azid-methode , 1979 .

[10]  I. Dyong,et al.  Synthesen biologisch wichtiger Kohlenhydrate, 13: Synthese des N‐Acetyl‐L‐acosamins (3‐Acetylamino‐2,3,6‐tridesoxy‐L‐arabino‐hexose) , 1978 .

[11]  K. Williamson Substituent Effects on Nuclear Magnetic Resonance Coupling Constants and Chemical Shifts in a Saturated System: Hexachlorobicyclo [2.2.1]heptenes , 1963 .

[12]  M. Sundaralingam,et al.  Conformational analysis of the sugar ring in nucleosides and nucleotides. A new description using the concept of pseudorotation. , 1972, Journal of the American Chemical Society.

[13]  G. Binsch,et al.  Dynamic proton magnetic resonance studies on complex spin systems. Non‐mutual three‐spin exchange in four 1‐substituted cyclohexanes‐2,2,3,3,4,4,5,5‐d8 and mutual four‐spin exchange in cyclohexane‐1,1,2,2,3,3,4,4‐d8 , 1978 .

[14]  K. Heyns,et al.  Die Synthese von 2,3‐Diamino‐2,3‐didesoxy‐D‐glycosiden aus 3‐Azidoglycalen über ihre Nitrosylchlorid‐Addukte , 1978 .

[15]  M. Karplus Contact Electron‐Spin Coupling of Nuclear Magnetic Moments , 1959 .

[16]  R. J. Abraham,et al.  Rotational isomerism—XXI: The conformation of 2-amino-3-fluoropropanoic acid (2-afp) and 2-fluoro-3-aminopropanoic acid (3-afp) as the zwitterion, cation and anion, an nmr and mo study , 1977 .

[17]  L. D. Hall,et al.  Fluorinated Carbohydrates. Part VIII. Studies of Some 3-Deoxy-3-fluoro-D-pyranosyl Fluorides , 1971 .

[18]  M. Anteunis,et al.  Experimental data for gauche couplings in carbohydrates , 1976 .

[19]  R. C. Fahey,et al.  Molecular Orbital Calculations of Spin-Spin Coupling Constants for Hydrocarbons , 1966 .

[20]  J. Vliegenthart,et al.  Conformational studies on pertrimethylsilyl derivatives of some mono- and disaccharides by 220 MHz PMR spectroscopy , 1973 .

[21]  J. Thiem,et al.  Untersuchungen zur Modifizierung der Mannobiose und Synthese von Methyl‐4‐O‐β‐D‐rhamnosyl‐α‐D‐olivosid , 1979 .

[22]  K. Pachler The functional form of the karplus equation , 1972 .

[23]  D. Horton,et al.  Conformational studies on pyranoid sugar derivatives by NMR spectroscopy. Correlations of observed proton—proton coupling constants with the generalized Karplus equation† , 1971 .

[24]  G. Wegner,et al.  Barrieren der behinderten Rotation um die N‐glycosidische Bindung, I: N‐Glucopyranoside , 1978 .

[25]  E. Havinga,et al.  Conformation of non-aromatic ring compounds—XXXIII: Trans-1,2-dihalogenocyclohexanes,trans-1,2-dihalogenocyclopentanes and α-halogenocyclohexanones; correlation between dipole moments and vicinal proton spin coupling constants , 1967 .

[26]  Pierre Sinaÿ,et al.  Etudes configurationnelles et conformationnelles de quelques chlorures de désoxy‐6 β‐L‐héxopyrannosyle chlorosulfonyles et de leurs glycosides de méthyle , 1975 .

[27]  Martin Karplus,et al.  Vicinal Proton Coupling in Nuclear Magnetic Resonance , 1963 .

[28]  G. A. Jeffrey,et al.  Application of ab initio molecular orbital calculations to the structural moieties of carbohydrates. 3 , 1978 .

[29]  W. Depmeier,et al.  Barrieren der behinderten Rotation um die N‐glycosidische Bindung, II: 1‐(α‐D‐Mannopyranosyl)isocyanursäuren , 1978 .

[30]  K. Pachler Extended hückel theory MO calculations of proton-proton coupling constants—II , 1971 .

[31]  H. Paulsen,et al.  Verzweigte Zucker, XXIII: 1,4‐Addition an Hex‐1‐enopyran‐3‐ulosen zu Oct‐2‐ulosonsäuren , 1978 .

[32]  E. Brown,et al.  Cell-surface carbohydrates and their interactions. I. NMR or N-acetyl neuraminic acid. , 1975, Biochimica et biophysica acta.

[33]  M. Sundaralingam,et al.  Conformational analysis of the sugar ring in nucleosides and nucleotides. Improved method for the interpretation of proton magnetic resonance coupling constants. , 1973, Journal of the American Chemical Society.

[34]  H. Paulsen,et al.  Monosaccharide mit stickstoffhaltigem Ring, XXXVI: 4,6‐Diamino‐1,6‐anhydro‐4,6‐didesoxy‐α‐D‐galactofuranose, ein Zucker mit zwei stickstoffhaltigen Ringen , 1978 .

[35]  R. J. Abraham,et al.  The proton magnetic resonance spectra of some substituted ethanes , 1964 .

[36]  M. Anteunis,et al.  1H-N.m.r. study of l-rhamnose, methyl α-l-rhamnopyranoside, and 4-O-β-d-galactopyranosyl-l-rhamnose in deuterium oxide , 1976 .

[37]  M. Huggins Bond Energies and Polarities1 , 1953 .