An Application Case Study on Multi-sensor Data fusion System for Intelligent Process Monitoring

Abstract Multi-sensor data fusion is a technology to enable combining information from several sources in order to form a unified picture. Focusing on the indirect method, an attempt was made to build up a multi-sensor data fusion system to monitor the condition of grinding wheels with force signals and the acoustic emission (AE) signals. An artificial immune algorithm based multi-signals processing method was presented in this paper. The intelligent monitoring system is capable of incremental supervised learning of grinding conditions and quickly pattern recognition, and can continually improve the monitoring precision. The application case indicates that the accuracy of condition identification is about 87%, and able to meet the industrial need on the whole.