A quartic C 3 -spline collocation method for solving second-order initial value problems
暂无分享,去创建一个
[1] T. N. E. Greville,et al. Theory and applications of spline functions , 1969 .
[2] E. H. Twizell,et al. Multiderivative Methods for Periodic Initial Value Problems , 1984 .
[3] M. M. Chawla. Two-step fourth orderP-stable methods for second order differential equations , 1981 .
[4] J. Lambert. Computational Methods in Ordinary Differential Equations , 1973 .
[5] L. Kramarz. Stability of collocation methods for the numerical solution ofy″=f (x,y) , 1980 .
[6] Syvert P. Norsett. Splines and Collocation for Ordinary Initial Value Problems , 1984 .
[7] S. O. Fatunla. Numerical Methods for Initial Value Problems in Ordinary Differential Equations , 1988 .
[8] M. M. Chawla,et al. Numerov made explicit has better stability , 1984 .
[9] T. E. Simos,et al. A family of two-step almostP-stable methods with phase-lag of order infinity for the numerical integration of second order periodic initial-value problems , 1993 .
[10] T. Simos. Runge-Kutta-Nyström interpolants for the numerical integration of special second-order periodic initial-value problems☆ , 1993 .
[11] Jeff Cash. High orderP-stable formulae for the numerical integration of periodic initial value problems , 1981 .
[12] Approximate solution of the differential equation ^{”}=(,) with spline functions , 1973 .
[14] J. M. Franco,et al. High-order P-stable multistep methods , 1990 .
[15] P. J. Van Der Houmen,et al. Predictor-corrector methods for periodic second-order initial-value problems , 1987 .
[16] S. Singh,et al. Approximation theory and spline functions , 1984 .
[17] Ernst Hairer,et al. Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .
[18] John P. Coleman. Numerical Methods for y″ =f(x, y) via Rational Approximations for the Cosine , 1989 .