Double monothetic clustering for histogram-valued data

[1]  L. Billard,et al.  From the Statistics of Data to the Statistics of Knowledge , 2003 .

[2]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[3]  Lynne Billard,et al.  A polythetic clustering process and cluster validity indexes for histogram-valued objects , 2011, Comput. Stat. Data Anal..

[4]  Francisco de A. T. de Carvalho,et al.  Unsupervised pattern recognition models for mixed feature-type symbolic data , 2010, Pattern Recognit. Lett..

[5]  Victor L. Brailovsky,et al.  Probabilistic validation approach for clustering , 1995, Pattern Recognit. Lett..

[6]  L. Billard,et al.  Dissimilarity Measures for Histogram-valued Observations , 2013 .

[7]  Edwin Diday,et al.  Probabilistic Allocation of Aggregated Statistical Units in Classification Trees for Symbolic Class Description , 2004 .

[8]  Edwin Diday,et al.  Symbolic Data Analysis: Conceptual Statistics and Data Mining (Wiley Series in Computational Statistics) , 2007 .

[9]  Lynne Billard Brief overview of symbolic data and analytic issues , 2011, Stat. Anal. Data Min..

[10]  Lynne Billard,et al.  Dissimilarity measures and divisive clustering for symbolic multimodal-valued data , 2012, Comput. Stat. Data Anal..

[11]  Lynne Billard,et al.  Symbolic data analysis: what is it? , 2006 .

[12]  G. N. Lance,et al.  Note on a New Information-Statistic Classificatory Program , 1968, Comput. J..

[13]  Antonio Irpino,et al.  Dynamic clustering of interval data using a Wasserstein-based distance , 2008, Pattern Recognit. Lett..

[14]  Marie Chavent,et al.  Divisive Monothetic Clustering for Interval and Histogram-valued Data , 2012, ICPRAM.

[15]  W. T. Williams,et al.  Dissimilarity Analysis: a new Technique of Hierarchical Sub-division , 1964, Nature.

[16]  Hans-Hermann Bock,et al.  Analysis of Symbolic Data , 2000 .

[17]  W. T. Williams,et al.  Multivariate Methods in Plant Ecology: I. Association-Analysis in Plant Communities , 1959 .

[18]  A W EDWARDS,et al.  A METHOD FOR CLUSTER ANALYSIS. , 1965, Biometrics.

[19]  Antonio Muñoz San Roque,et al.  Smoothing methods for histogram‐valued time series: an application to value‐at‐risk , 2011, Stat. Anal. Data Min..

[20]  Antonio Irpino,et al.  Comparing Histogram Data Using a Mahalanobis–Wasserstein Distance , 2008 .

[21]  Edwin Diday,et al.  Probabilist, possibilist and belief objects for knowledge analysis , 1995, Ann. Oper. Res..

[22]  Antonio Irpino,et al.  A New Wasserstein Based Distance for the Hierarchical Clustering of Histogram Symbolic Data , 2006, Data Science and Classification.