Fourier’s heat conduction equation: History, influence, and connections

The equation describing the conduction of heat in solids has, over the past two centuries, proved to be a powerful tool for analyzing the dynamic motion of heat as well as for solving an enormous array of diffusion-type problems in physical sciences, biological sciences, earth sciences, and social sciences. This equation was formulated at the beginning of the nineteenth century by one of the most gifted scholars of modern science, Joseph Fourier of France. A study of the historical context in which Fourier made his remarkable contribution and the subsequent impact his work has had on the development of modern science is as fascinating as it is educational. This paper is an attempt to present a picture of how certain ideas initially led to Fourier's development of the heat equation and how, subsequently, Fourier's work directly influenced and inspired others to use the heat diffusion model to describe other dynamic physical systems. Conversely, others concerned with the study of random processes found that the equations governing such random processes reduced, in the limit, to Fourier's equation of heat diffusion. In the process of developing the flow of ideas, the paper also presents, to the extent possible, an account of the history and personalities involved.

[1]  F. Y. Edgeworth,et al.  The Law of Error , 1887, Nature.

[2]  A. O. Walker British Fruit Growing , 1905, Nature.

[3]  T. Graham I. The Bakerian Lecture.—On the diffusion of liquids , 1850, Philosophical Transactions of the Royal Society of London.

[4]  G. S. Ohm,et al.  Die galvanische Kette , 1827 .

[5]  H. S. Carslaw. Introduction to the Mathematical Theory of the Conduction of Heat in Solids , 1922 .

[6]  S. Stigler Francis Ysidro Edgeworth, Statistician , 1978 .

[7]  R. C. Merton,et al.  Optimum consumption and portfolio rules in a continuous - time model Journal of Economic Theory 3 , 1971 .

[8]  Charles Coulston Gillispie,et al.  Dictionary of scientific biography , 1970 .

[9]  D. McKenzie Some remarks on heat flow and gravity anomalies , 1967 .

[10]  L. Bachelier,et al.  Théorie de la spéculation , 1900 .

[11]  W. Pfeffer,et al.  Osmotische Untersuchungen : studien zur zellmechanik , 1921 .

[12]  Anthony Hallam,et al.  Great Geological Controversies , 1983 .

[13]  Lord Rayleigh F.R.S. XII. On the resultant of a large number of vibrations of the same pitch and of arbitrary phase , 1880 .

[14]  W. C. Roberts-Austen Bakerian Lecture: On the Diffusion of Metals , 1896 .

[15]  F. H. King CONTRIBUTIONS TO OUR KNOWLEDGE OF THE AERATION OF SOILS. , 1905, Science.

[16]  A. Fick V. On liquid diffusion , 1855 .

[17]  Walther Nernst Zur Kinetik der in Lösung befindlichen Körper , 1888 .

[18]  W. Thomson LXXX. On the uniform motion of heat in homogeneous solid bodies, and its connexion with the mathematical theory of electricity , 1854 .

[19]  D. Lemons,et al.  Paul Langevin’s 1908 paper “On the Theory of Brownian Motion” [“Sur la théorie du mouvement brownien,” C. R. Acad. Sci. (Paris) 146, 530–533 (1908)] , 1997 .

[20]  R. A. Fisher,et al.  On the dominance ratio , 1990 .

[21]  P. Forchheimer Über die Ergiebigkeit von Brunnen-Anlagen und Sickerschlitzen , 1886 .

[22]  G. B. The Dynamical Theory of Gases , 1916, Nature.

[23]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[24]  A. E. Maxwell,et al.  Heat Flow through the Deep Sea Floor , 1956 .

[25]  L. W. Barr The Origin of Quantitative Diffusion Measurements in Solids: A Centenary View , 1997 .

[26]  J D Craggs Joseph Fourier: the Man and the Physicist , 1975 .

[27]  KARL PEARSON,et al.  The Problem of the Random Walk , 1905, Nature.

[28]  J. H. van't Hoff,et al.  Die Rolle des osmotischen Druckes in der Analogie zwischen Lösungen und Gasen , 1887 .

[29]  Jean-Antoine Nollet Investigations on the causes for the ebullition of liquids , 1995 .

[30]  G. Taylor Dispersion of soluble matter in solvent flowing slowly through a tube , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[31]  G. Kirchhoff Ueber eine Ableitung der Ohm'schen Gesetze, welche sich an die Theorie der Elektrostatik anschliesst , 1849 .

[32]  L. A. Richards Capillary conduction of liquids through porous mediums , 1931 .

[33]  G. Hagen,et al.  Ueber die Bewegung des Wassers in engen cylindrischen Röhren , 1839 .

[34]  G. S. Ohm,et al.  Die galvanische Kette, mathematisch bearbeitet , 1965 .

[35]  LavoisierMM.,et al.  Mémoire sur la chaleur , 1921 .