Have we observed the Higgs boson (imposter)

We interpret the new particle at the Large Hadron Collider as a $CP$-even scalar and investigate its electroweak quantum number. Assuming an unbroken custodial invariance as suggested by precision electroweak measurements, only four possibilities are allowed if the scalar decays to pairs of gauge bosons, as exemplified by a dilaton/radion, a nondilatonic electroweak singlet scalar, an electroweak doublet scalar, and electroweak triplet scalars. We show that current LHC data already strongly disfavor both the ``plain-vanilla'' dilatonic and nondilatonic singlet imposters. On the other hand, a generic Higgs doublet gives excellent fits to the measured event rates of the newly observed scalar resonance, while the Standard Model Higgs boson gives a slightly worse overall fit due to the lack of a signal in the $\ensuremath{\tau}\ensuremath{\tau}$ channel. The triplet imposter exhibits some tension with the data. The global fit indicates that the enhancement in the diphoton channel could be attributed to an enhanced partial decay width, while the production rates are consistent with the Standard Model expectations. We emphasize that more precise measurements of the ratio of event rates in the $WW$ over $ZZ$ channels, as well as the event rates in $b\overline{b}$ and $\ensuremath{\tau}\ensuremath{\tau}$ channels, are needed to further distinguish the Higgs doublet from the triplet imposter.

[1]  Ryszard S. Romaniuk,et al.  Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012 .

[2]  M. Carena,et al.  Implications of a modified Higgs to diphoton decay width , 2012, 1206.1082.

[3]  R. Lafaye,et al.  Measuring Higgs couplings from LHC data. , 2012, Physical review letters.

[4]  C. Grojean,et al.  (Dys)Zphilia or a custodial breaking Higgs at the LHC , 2012, 1205.0011.

[5]  J. Ellis,et al.  Global analysis of experimental constraints on a possible Higgs-like particle with mass ∼ 125 GeV , 2012, 1204.0464.

[6]  M. Raidal,et al.  Reconstructing Higgs boson properties from the LHC and Tevatron data , 2012, 1203.4254.

[7]  M. Mühlleitner,et al.  Fingerprinting Higgs suspects at the LHC , 2012, 1202.3697.

[8]  Roberto Contino,et al.  Model-independent bounds on a light Higgs , 2012, 1202.3415.

[9]  A. Falkowski,et al.  Interpreting LHC Higgs results from natural new physics perspective , 2012, 1202.3144.

[10]  K. Cheung,et al.  Could the excess seen at 124-126 GeV be due to the Randall-Sundrum radion? , 2011, Physical review letters.

[11]  W. Keung,et al.  Differentiating the Higgs boson from the dilaton and radion at Hadron colliders. , 2011, Physical review letters.

[12]  H. Logan,et al.  Dilaton constraints and LHC prospects , 2011, 1111.3276.

[13]  Y. Soreq,et al.  Shining flavor and radion phenomenology in warped extra dimension , 2011, 1106.6218.

[14]  J. Lykken,et al.  Singlet scalars as Higgs imposters at the Large Hadron Collider , 2011, 1105.4587.

[15]  H. Logan,et al.  Higgs couplings in a model with triplets , 2010, 1008.4869.

[16]  J. Lykken,et al.  Revealing the electroweak properties of a new scalar resonance , 2010, 1005.0872.

[17]  J. Lykken,et al.  Higgs boson look-alikes at the LHC , 2010, 1001.5300.

[18]  N. Tran,et al.  Spin determination of single-produced resonances at hadron colliders , 2010, 1001.3396.

[19]  W. Keung,et al.  Higgs mechanism and loop-induced decays of a scalar into two Z bosons , 2009, 0911.3398.

[20]  B. Grinstein,et al.  Distinguishing the higgs boson from the dilaton at the large hadron collider. , 2008, Physical review letters.

[21]  JiJi Fan,et al.  Standard Model couplings and collider signatures of a light scalar , 2008, 0803.2040.

[22]  Paul Langacker,et al.  CERN LHC phenomenology of an extended standard model with a real scalar singlet , 2007, 0706.4311.

[23]  Seung J. Lee,et al.  Radion phenomenology in realistic warped space models , 2007, 0705.3844.

[24]  R. Rattazzi,et al.  The Strongly-Interacting Light Higgs , 2007, hep-ph/0703164.

[25]  A. Djouadi The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model , 2005, hep-ph/0503172.

[26]  E. Richter-Was,et al.  Measuring Higgs boson couplings at the CERN LHC , 2000 .

[27]  James D. Wells,et al.  Graviscalars from higher-dimensional metrics and curvature-Higgs mixing , 2000, hep-ph/0002178.

[28]  M. Wise,et al.  Modulus stabilization with bulk fields , 1999, hep-ph/9907447.

[29]  J. Maldacena The Large-N Limit of Superconformal Field Theories and Supergravity , 1997, hep-th/9711200.

[30]  Gunion,et al.  Higgs triplets in the standard model. , 1990, Physical review. D, Particles and fields.

[31]  H. Georgi,et al.  Doubly charged pseudo-goldstone bosons and dynamical SU(2) × U(1) breaking , 1986 .

[32]  H. Georgi,et al.  Doubly charged Higgs bosons , 1985 .

[33]  Mitchell Golden,et al.  Higgs boson triplets with Mw=Mzcos θw☆ , 1985 .

[34]  Leonard Susskind,et al.  Isospin breaking in technicolor models , 1980 .

[35]  Steven Weinberg,et al.  A Model of Leptons , 1967 .

[36]  C. Yang Selection Rules for the Dematerialization of a Particle into Two Photons , 1950 .

[37]  L. Landau On the angular momentum of a system of two photons , 1948 .

[38]  S. Weinberg,et al.  Symmetry Breaking and Scalar Bosons , 1976 .