Representing Partial Spatial Information in Databases

In this paper we present a spatial data model which facilitates the representation of and reasoning with various forms of qualitatively and quantitatively incomplete spatial information. The model is founded on a combination of object-oriented and constraint-based data modeling facilities and provides for representations of variable precision and granularity. We identify four basic reasoning tasks required for query processing operations and outline algorithms for each task. Finally, we discuss extensions of the model and outline an implementation based on the Telos knowledge base management system extended with an appropriate constraint reasoning component.

[1]  Clement T. Yu,et al.  Reasoning About Spatial Relationships in Picture Retrieval Systems , 1994, VLDB.

[2]  Max J. Egenhofer,et al.  Reasoning about Binary Topological Relations , 1991, SSD.

[3]  Manolis Koubarakis Dense Time and Temporal Constraints with 6 = , 1992 .

[4]  Manolis Koubarakis,et al.  Database models for infinite and indefinite temporal information , 1994, Inf. Syst..

[5]  John Mylopoulos,et al.  Building knowledge base management systems , 1996, The VLDB Journal.

[6]  Max J. Egenhofer,et al.  What's special about spatial?: database requirements for vehicle navigation in geographic space , 1993, SIGMOD Conference.

[7]  Sushil Jajodia,et al.  Temporal modules: an approach toward federated temporal databases , 1993, Inf. Sci..

[8]  Herbert B. Enderton,et al.  A mathematical introduction to logic , 1972 .

[9]  P. V. Beek Exact and approximate reasoning about qualitative temporal relations , 1992 .

[10]  Timos K. Sellis,et al.  Topological relations in the world of minimum bounding rectangles: a study with R-trees , 1995, SIGMOD '95.

[11]  Gabriel M. Kuper,et al.  Constraint Query Languages , 1995, J. Comput. Syst. Sci..

[12]  Christos Faloutsos,et al.  An Efficient Pictorial Database System for PSQL , 1988, IEEE Trans. Software Eng..

[13]  Giuliana Dettori,et al.  Towards a Formal Model for Multi-Resolution Spatial Maps , 1995, SSD.

[14]  J. Mylopoulos,et al.  On the representation of partial spatial information in knowledge bases , 1997 .

[15]  Manolis Koubarakis,et al.  Dense Time and Temporal Constraints with != , 1992, KR.

[16]  Daniel Hernández,et al.  Qualitative Representation of Spatial Knowledge , 1994, Lecture Notes in Computer Science.

[17]  Patrick J. Hayes,et al.  The second naive physics manifesto , 1995 .

[18]  Claudia Bauzer Medeiros,et al.  Databases for GIS , 1994, SGMD.

[19]  T. Topaloglou First-order Theories of Approximate Space Extended Abstract , 1994 .

[20]  Frank Manola,et al.  PROBE Spatial Data Modeling and Query Processing in an Image Database Application , 1988, IEEE Trans. Software Eng..

[21]  Matthias Jarke,et al.  Telos: representing knowledge about information systems , 1990, TOIS.

[22]  C.E. Dyreson,et al.  Valid-time indeterminacy , 1993, Proceedings of IEEE 9th International Conference on Data Engineering.

[23]  Alan K. Mackworth Consistency in Networks of Relations , 1977, Artif. Intell..

[24]  Henry A. Kautz,et al.  Integrating Metric and Qualitative Temporal Reasoning , 1991, AAAI.

[25]  Manolis Koubarakis Database Models for Innnite and Indeenite Temporal Information , 1994 .

[26]  Michel Scholl,et al.  Multi-Scale Partitions: Application to Spatial and Statistical Databases , 1995, SSD.

[27]  Angelo Montanari,et al.  Embedding Time Granularity in a Logical Specification Language for Synchronous Real-Time Systems , 1993, Sci. Comput. Program..

[28]  Mehmet A. Orgun,et al.  ON TEMPORAL DEDUCTIVE DATABASES , 1996, Comput. Intell..

[29]  Rina Dechter,et al.  Temporal Constraint Networks , 1989, Artif. Intell..