Convexity preserving splines over triangulations

A general method is given for constructing sets of sufficient linear conditions that ensure convexity of a polynomial in Bernstein-Bezier form on a triangle. Using the linear conditions, computational methods based on macro-element spline spaces are developed to construct convexity preserving splines over triangulations that interpolate or approximate given scattered data.

[1]  C. A. Micchelli,et al.  Convex Preserving Scattered Data Interpolation Using Bivariate C1 Cubic Splines , 2000 .

[2]  Panagiotis D. Kaklis,et al.  Convexity conditions for parametric tensor‐product B‐spline surfaces , 1999, Adv. Comput. Math..

[3]  Jin-Jin Zheng The convexity of parametric Bézier triangular patches of degree 2 , 1993, Comput. Aided Geom. Des..

[4]  Xiaoyan Chen,et al.  The conditions of convexity for Bernstein-Bézier surfaces over triangles , 2010, Comput. Aided Geom. Des..

[5]  Michael S. Floater A counterexample to a theorem about the convexity of Powell-Sabin elements , 1997, Comput. Aided Geom. Des..

[6]  Wolfgang Dahmen,et al.  Convexity preserving interpolation and Powell-Sabin elements , 1992, Comput. Aided Geom. Des..

[7]  Paul Dierckx,et al.  Algorithms for surface fitting using Powell-Sabin splines , 1992 .

[8]  John A. Gregory,et al.  Convexity of Bézier nets on sub-triangles , 1991, Comput. Aided Geom. Des..

[9]  Charles K. Chui,et al.  Convexity of parametric Bézier surfaces in terms of Gaussian curvature signatures , 1994, Adv. Comput. Math..

[10]  T. He Shape criteria of Bernstein-Bézier polynomials over simplexes , 1995 .

[11]  Hartmut Prautzsch,et al.  A geometric criterion for the convexity of Powell-Sabin interpolants and its multivariate generalization , 1999, Comput. Aided Geom. Des..

[12]  Tim N. T. Goodman Convexity of Bézier nets on triangulations , 1991, Comput. Aided Geom. Des..

[13]  Hans-Peter Seidel,et al.  An introduction to polar forms , 1993, IEEE Computer Graphics and Applications.

[15]  Paul Sablonnière,et al.  On the convexity of Bézier nets of quadratic Powell—Sabin splines on 12-fold refined triangulations , 2000 .

[16]  Larry L. Schumaker,et al.  Computing bivariate splines in scattered data fitting and the finite-element method , 2008, Numerical Algorithms.

[17]  Bert Jüttler,et al.  Surface fitting using convex tensor-product splines , 1997 .

[18]  Aidi Li,et al.  Convexity preserving interpolation , 1999, Comput. Aided Geom. Des..

[19]  Michael S. Floater,et al.  A weak condition for the convexity of tensor-product Bézier and B-spline surfaces , 1994, Adv. Comput. Math..

[20]  Jesús M. Carnicer Multivariate convexity preserving interpolation by smooth functions , 1995, Adv. Comput. Math..

[21]  Paul Dierckx,et al.  On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..

[22]  Geng-zhe Chang,et al.  An improved condition for the convexity of Bernstein-Bézier surfaces over triangles , 1984, Comput. Aided Geom. Des..

[23]  Paul Sablonnière,et al.  On the convexity of C1 surfaces associated with some quadrilateral finite elements , 2000, Adv. Comput. Math..

[24]  Wolfgang Dahmen,et al.  Convexity and Bernstein-Bézier Polynomials , 1991, Curves and Surfaces.

[25]  Bert Jüttler Convex surface fitting with parametric Be´zier surfaces , 1998 .

[26]  Philip J. Davis,et al.  The convexity of Bernstein polynomials over triangles , 1984 .

[27]  Juan Manuel Peña,et al.  Linear convexity conditions for rectangular and triangular Bernstein-Bézier surfaces , 1997, Comput. Aided Geom. Des..

[28]  Falai Chen,et al.  The invariance of weak convexity conditions of B-nets with respect to subdivision , 1994, Comput. Aided Geom. Des..

[29]  Yuan Cao,et al.  The convexity of quadratic parametic triangular Bernstein-Bézier surfaces , 1991, Comput. Aided Geom. Des..

[30]  Tomas Sauer Multivariate Bernstein polynomials and convexity , 1991, Comput. Aided Geom. Des..

[31]  Zheng-bin Wang,et al.  An improved condition for the convexity and positivity of Bernstein-Bézier surfaces over triangles , 1988, Comput. Aided Geom. Des..

[32]  N. K. LEUNG,et al.  Convexity-preserving Interpolation of Scattered Data * , 1999 .

[33]  Jesús M. Carnicer,et al.  Piecewise linear interpolants to Lagrange and Hermite convex scattered data , 1996, Numerical Algorithms.

[34]  Chang-Zheng Zhou On the convexity of parametric Bézier triangular surfaces , 1990, Comput. Aided Geom. Des..

[35]  Ming-Jung Lai Convex preserving scattered data interpolation using bivariate C 1 cubic splines , 2000 .

[36]  Paul Dierckx,et al.  Surface fitting using convex Powell-Sabin splines , 1994 .

[37]  Juan Manuel Peña,et al.  Convexity preserving scattered data interpolation using Powell-Sabin elements , 2009, Comput. Aided Geom. Des..

[38]  Jörg Peters,et al.  Bézier nets, convexity and subdivision on higher-dimensional simplices , 1995, Comput. Aided Geom. Des..

[39]  Thomas A. Grandine,et al.  On convexity of piecewise polynomial functions on triangulations , 1989, Comput. Aided Geom. Des..

[40]  Robert J. Renka,et al.  C1 Convexity-Preserving Interpolation of Scattered Data , 1999, SIAM J. Sci. Comput..

[41]  Larry L. Schumaker,et al.  Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.